Natural Deduction for Intuitionistic Non-communicative Linear Logic

We present a system of natural deduction and associated term calculus for intuitionistic non-commutative linear logic (INCLL) as a conservative extension of intuitionistic linear logic. We prove subject reduction and the existence of canonical forms in the implicational fragment.

[1]  Frank Pfenning,et al.  Ordered Linear Logic Programming , 1998 .

[2]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[3]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[4]  Remo Pareschi,et al.  Type-driven natural language analysis , 1988 .

[5]  Michael Moortgat,et al.  Structural control , 1997 .

[6]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[7]  Doug Gurr,et al.  Relations and non-commutative linear logic☆ , 1995 .

[8]  Dale Miller,et al.  Logic Programming in a Fragment of Intuitionistic Linear Logic , 1994, Inf. Comput..

[9]  Olivier Danvy,et al.  The Occurrence of Continuation Parameters in CPS Terms , 1995 .

[10]  Neil Ghani Eta-Expansions in Dependent Type Theory - The Calculus of Constructions , 1997, TLCA.

[11]  Frank Pfenning,et al.  Relating Natural Deduction and Sequent Calculus for Intuitionistic Non-Commutative Linear Logic , 1999, MFPS.

[12]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[13]  Olivier Danvy,et al.  Back to Direct Style , 1992, Sci. Comput. Program..

[14]  Frank Pfenning,et al.  The Practice of Logical Frameworks , 1996, CAAP.

[15]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[16]  Paul Ruet Logique non-commutative et programmation concurrente par contraintes , 1997 .

[17]  V. Michele Abrusci Non-commutative intuitionistic linear logic , 1990, Math. Log. Q..

[18]  Frank Pfenning,et al.  A linear logical framework , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[19]  J. S. Hodas Logic programming in intuitionistic linear logic: theory, design, and implementation , 1995 .

[20]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[21]  Andrew G. Barber,et al.  Linear type theories, semantics and action calculi , 1997 .