Model Choice using Reversible Jump Markov Chain

We review the across-model simulation approach to computation for Bayesian model determination, based on the reversible jump Markov chain Monte Carlo method. Advantages, difficulties and variations of the methods are discussed. We also discuss some limitations of the ideal Bayesian view of the model determination problem, for which no computational methods can provide a cure. Some key words: Across-model sampling, Bayes factors, Bayesian model determination, posterior model probabilities, transdimensional inference, variable dimension problems,

[1]  A. Gelman,et al.  Some Issues in Monitoring Convergence of Iterative Simulations , 1998 .

[2]  Darryn Bryant,et al.  A Generalized Markov Sampler , 2004 .

[3]  Arnaud Doucet,et al.  Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..

[4]  Nando de Freitas,et al.  Reversible Jump MCMC Simulated Annealing for Neural Networks , 2000, UAI.

[5]  O. Cappé,et al.  Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers , 2003 .

[6]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Julian Besag,et al.  Markov Chain Monte Carlo for Statistical Inference , 2002 .

[8]  P. Green,et al.  Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .

[9]  Petros Dellaportas,et al.  On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[12]  Stephen P. Brooks,et al.  Adaptive Proposal Construction for Reversible Jump MCMC , 2008 .

[13]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[14]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[15]  S. Brooks,et al.  Classical model selection via simulated annealing , 2003, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[16]  J. Rosenthal,et al.  Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.

[17]  Scott A. Sisson,et al.  A distance-based diagnostic for trans-dimensional Markov chains , 2007, Stat. Comput..

[18]  Robert B. Gramacy,et al.  Importance tempering , 2007, Stat. Comput..

[19]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[20]  Stephen P. Brooks,et al.  Perfect Forward Simulation via Simulated Tempering , 2006 .

[21]  R. Waagepetersen,et al.  A Tutorial on Reversible Jump MCMC with a View toward Applications in QTL‐mapping , 2001 .

[22]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[23]  Ajay Jasra,et al.  Population-Based Reversible Jump Markov Chain Monte Carlo , 2007, 0711.0186.

[24]  Michael A. Newton,et al.  Assessing Poisson variation of intestinal tumour multiplicity in mice carrying a Robertsonian translocation , 2006 .

[25]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[26]  A. Spirling “Turning Points” in the Iraq Conflict , 2007 .

[27]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[28]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[29]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[30]  Radford M. Neal Optimal Proposal Distributions and Adaptive MCMC , 2008 .

[31]  A. Mira,et al.  Efficient Bayes factor estimation from the reversible jump output , 2006 .

[32]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[33]  Mark S. Handcock,et al.  Center for Statistics and the Social Sciences University of Washington , 2007 .

[34]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[35]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[36]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[37]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[38]  J. Marin,et al.  Population Monte Carlo , 2004 .

[39]  M. Hurn,et al.  Improving the acceptance rate of reversible jump MCMC proposals , 2004 .

[40]  Luca Tardella,et al.  A geometric approach to transdimensional markov chain monte carlo , 2003 .

[41]  Juha Heikkinen Trans-dimensional Bayesian non-parametrics with spatial point processes , 2003 .

[42]  P. Green,et al.  Trans-dimensional Markov chain Monte Carlo , 2000 .

[43]  H. Tjelmeland,et al.  Mode Jumping Proposals in MCMC , 2001 .

[44]  S. Q. s3idChMn,et al.  Evolutionary Monte Carlo: Applications to C_p Model Sampling and Change Point Problem , 2000 .

[45]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[46]  Richard G. Everitt,et al.  Likelihood-free estimation of model evidence , 2011 .

[47]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .