New horizons for inorganic solid state ion conductors

Among the contenders in the new generation energy storage arena, all-solid-state batteries (ASSBs) have emerged as particularly promising, owing to their potential to exhibit high safety, high energy density and long cycle life. The relatively low conductivity of most solid electrolytes and the often sluggish charge transfer kinetics at the interface between solid electrolyte and electrode layers are considered to be amongst the major challenges facing ASSBs. This review presents an overview of the state of the art in solid lithium and sodium ion conductors, with an emphasis on inorganic materials. The correlations between the composition, structure and conductivity of these solid electrolytes are illustrated and strategies to boost ion conductivity are proposed. In particular, the high grain boundary resistance of solid oxide electrolytes is identified as a challenge. Critical issues of solid electrolytes beyond ion conductivity are also discussed with respect to their potential problems for practical applications. The chemical and electrochemical stabilities of solid electrolytes are discussed, as are chemo-mechanical effects which have been overlooked to some extent. Furthermore, strategies to improve the practical performance of ASSBs, including optimizing the interface between solid electrolytes and electrode materials to improve stability and lower charge transfer resistance are also suggested.

[1]  J. Janek,et al.  Diffusion mechanism in the superionic conductor Li4PS4I studied by first-principles calculations , 2018, Solid State Ionics.

[2]  Thorben Krauskopf,et al.  Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries , 2018 .

[3]  Thorben Krauskopf,et al.  Local Tetragonal Structure of the Cubic Superionic Conductor Na3PS4. , 2018, Inorganic chemistry.

[4]  Gunther Reinhart,et al.  All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production , 2018 .

[5]  Lei Wang,et al.  Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification , 2018 .

[6]  D. Weber,et al.  Correlating Transport and Structural Properties in Li1+ xAl xGe2- x(PO4)3 (LAGP) Prepared from Aqueous Solution. , 2018, ACS applied materials & interfaces.

[7]  Thorben Krauskopf,et al.  Bottleneck of Diffusion and Inductive Effects in Li10Ge1–xSnxP2S12 , 2018 .

[8]  Abhinandan Shyamsunder,et al.  Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1–xPS4 , 2018 .

[9]  Li-Min Wang,et al.  Improvement in ion transport in Na3PSe4–Na3SbSe4 by Sb substitution , 2018, Journal of Materials Science.

[10]  D. Hu,et al.  Lithium Expulsion from the Solid-State Electrolyte Li6.4La3Zr1.4Ta0.6O12 by Controlled Electron Injection in a SEM. , 2018, ACS applied materials & interfaces.

[11]  Zhizhen Zhang,et al.  Na11Sn2PS12: a new solid state sodium superionic conductor , 2018 .

[12]  Christian Masquelier,et al.  Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.

[13]  Thorben Krauskopf,et al.  Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites , 2018 .

[14]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[15]  J. Sann,et al.  Redox-active cathode interphases in solid-state batteries , 2017 .

[16]  Youlong Xu,et al.  LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity , 2017 .

[17]  Thorben Krauskopf,et al.  Influence of lattice dynamics on Na+-transport in the solid electrolyte Na3PS4−xSex , 2017 .

[18]  T. Leichtweiss,et al.  The Detrimental Effects of Carbon Additives in Li10GeP2S12-Based Solid-State Batteries. , 2017, ACS applied materials & interfaces.

[19]  Yang Shen,et al.  Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. , 2017, Journal of the American Chemical Society.

[20]  D. Weber,et al.  Lithium ion conductivity in Li2S–P2S5 glasses – building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7 , 2017 .

[21]  Yang Shen,et al.  Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid electrolyte by Al doping , 2017 .

[22]  J. Janek,et al.  Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). , 2017, Journal of the American Chemical Society.

[23]  Yulong Sun,et al.  Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary System , 2017 .

[24]  J. Maier,et al.  Relevance of solid electrolytes for lithium-based batteries: A realistic view , 2017, Journal of Electroceramics.

[25]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[26]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[27]  D. Weber,et al.  (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries , 2017 .

[28]  T. Leichtweiss,et al.  Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[29]  Jyotirmoy Mandal,et al.  A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. , 2017, Nano letters.

[30]  W. Richards,et al.  Compatibility Issues Between Electrodes and Electrolytes in Solid-State Batteries , 2017 .

[31]  Jong‐Won Lee,et al.  Enhanced Li+ conduction in perovskite Li3xLa2/3−x□1/3−2xTiO3 solid-electrolytes via microstructural engineering , 2017 .

[32]  Yang Shen,et al.  Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. , 2017, ACS applied materials & interfaces.

[33]  F. Tietz,et al.  Structure and Vibrational Dynamics of NASICON-Type LiTi2(PO4)3 , 2017 .

[34]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[35]  J. Janek,et al.  Li4PS4I: A Li+ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach , 2017 .

[36]  Lucienne Buannic,et al.  Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. , 2017, ACS applied materials & interfaces.

[37]  John B. Goodenough,et al.  Alternative strategy for a safe rechargeable battery , 2017 .

[38]  Isabel Sobrados,et al.  Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study. , 2017, Inorganic chemistry.

[39]  D. Weber,et al.  Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6 , 2016 .

[40]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[41]  W. Richards,et al.  Design of Li1+2xZn1−xPS4, a new lithium ion conductor , 2016 .

[42]  Wolfgang G. Zeier,et al.  Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. , 2016, ACS applied materials & interfaces.

[43]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[44]  Xingguo Qi,et al.  Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications , 2016 .

[45]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[46]  S. Shi,et al.  Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations. , 2016, ACS applied materials & interfaces.

[47]  Y. Meng,et al.  Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries , 2016 .

[48]  Sebastian Wenzel,et al.  In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup , 2016 .

[49]  Yutao Li,et al.  Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[50]  Sebastian Wenzel,et al.  Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12 , 2016 .

[51]  R. Cava,et al.  Li0.6[Li0.2Sn0.8S2] – a layered lithium superionic conductor , 2016 .

[52]  Zachary D. Hood,et al.  An Air-Stable Na3 SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. , 2016, Angewandte Chemie.

[53]  A. Hayashi,et al.  Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries , 2016, Front. Energy Res..

[54]  Q. Ma,et al.  Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors , 2016 .

[55]  G. Ceder,et al.  Structural and Na-ion conduction characteristics of Na3PSxSe4−x , 2016 .

[56]  Limin Wang,et al.  Vacancy‐Contained Tetragonal Na3SbS4 Superionic Conductor , 2016, Advanced science.

[57]  F. Tietz,et al.  Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li1+xAlxTi2–x(PO4)3 (0.0 ≤ x ≤ 1.0) , 2016 .

[58]  Z. Khakpour Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity , 2016 .

[59]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[60]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[61]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[62]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[63]  S. Ong,et al.  Design and synthesis of the superionic conductor Na10SnP2S12 , 2016, Nature Communications.

[64]  J. Goodenough,et al.  Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells , 2016 .

[65]  Michael J. Hoffmann,et al.  Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor. , 2016, Inorganic chemistry.

[66]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[67]  Z. Deng,et al.  Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor , 2015 .

[68]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[69]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[70]  Yong-Sheng Hu,et al.  Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode , 2015, Advanced materials.

[71]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[72]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[73]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[74]  M. J. McDonald,et al.  Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites , 2015 .

[75]  E. Wachsman,et al.  Structural Investigation of Monoclinic‐Rhombohedral Phase Transition in Na3Zr2Si2PO12 and Doped NASICON , 2015 .

[76]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[77]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[78]  C. Elsässer,et al.  Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study , 2015 .

[79]  Haomin Chen,et al.  Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[80]  U. Waghmare,et al.  Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12 , 2015 .

[81]  Jun Ho Song,et al.  Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. , 2015, Nano letters.

[82]  A. Schwöbel,et al.  Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission , 2015 .

[83]  Chunsheng Wang,et al.  A Battery Made from a Single Material , 2015, Advanced materials.

[84]  M. Nakayama,et al.  Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes , 2015 .

[85]  E. Wachsman,et al.  Highly conductive Li garnets by a multielement doping strategy. , 2015, Inorganic chemistry.

[86]  Karim Zaghib,et al.  New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈. , 2015, Nano letters.

[87]  R. Jiménez,et al.  On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2 - X(PO4)3 Nasicon type materials , 2015 .

[88]  A. Kuwabara,et al.  Domain boundaries and their influence on Li migration in solid-state electrolyte (La,Li)TiO3 , 2015 .

[89]  Steve W. Martin,et al.  Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure , 2015 .

[90]  M. Hirayama,et al.  Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−xMx)P2S12 (M = Si, Sn) , 2014 .

[91]  R. Mouta,et al.  Concentration of Charge Carriers, Migration, and Stability in Li3OCl Solid Electrolytes , 2014 .

[92]  D. Többens,et al.  A systematic study of Nasicon-type Li1 + xMxTi2 − x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy , 2014 .

[93]  M. J. McDonald,et al.  The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes , 2014 .

[94]  Yang Shen,et al.  Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12 , 2014 .

[95]  R. Murugan,et al.  Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. , 2014, ACS applied materials & interfaces.

[96]  Y. Sakurai,et al.  Synthesis and properties of Al-free Li7-xLa3Zr2-xTaxO12 garnet related oxides , 2014 .

[97]  Y. Iriyama,et al.  In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery , 2014 .

[98]  T. Thompson,et al.  Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO) , 2014 .

[99]  Changbao Zhu,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[100]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[101]  C. Bernuy-López,et al.  Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics , 2014 .

[102]  M. Tribus,et al.  A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7–3xGaxLa3 Zr2O12 with x = 0.08 to 0.84 , 2014, Inorganic chemistry.

[103]  C. Liang,et al.  Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes , 2014 .

[104]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[105]  B. Lotsch,et al.  A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1−xS2 solid solutions , 2014 .

[106]  K. Schwarz,et al.  DFT Study of the Role of Al3+ in the Fast Ion-Conductor Li7–3xAl3+xLa3Zr2O12 Garnet , 2014, Chemistry of materials : a publication of the American Chemical Society.

[107]  M. Braga,et al.  Novel Li3ClO based glasses with superionic properties for lithium batteries , 2014 .

[108]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[109]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[110]  Anton Van der Ven,et al.  Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors , 2013 .

[111]  Xingbo Liu,et al.  On the La2/3−xLi3xTiO3/Al2O3 composite solid-electrolyte for Li-ion conduction , 2013 .

[112]  L. Dhivya,et al.  Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .

[113]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[114]  J. Maier,et al.  Soggy-sand electrolytes: status and perspectives. , 2013, Physical chemistry chemical physics : PCCP.

[115]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[116]  E. A. Il’ina,et al.  Structure and transport properties of Li7La3Zr2−0.75xAlxO12 superionic solid electrolytes , 2013 .

[117]  M. Hoelzel,et al.  Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2-x)Al(x)(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K. , 2013, Inorganic chemistry.

[118]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[119]  J. Vaughey,et al.  Low temperature stabilization of cubic (Li7−xAlx/3)La3Zr2O12: role of aluminum during formation , 2013 .

[120]  T. Teranishi,et al.  Lithium ion conductivity of Nd-doped (Li, La)TiO3 ceramics , 2013 .

[121]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[122]  M. Armand,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[123]  Yi Zhang,et al.  Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites , 2013 .

[124]  A. Kuwabara,et al.  Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate , 2013 .

[125]  Yang Shen,et al.  Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder , 2013 .

[126]  J. Janek,et al.  Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium , 2013 .

[127]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[128]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[129]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[130]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[131]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[132]  J. Fergus Ion transport in sodium ion conducting solid electrolytes , 2012 .

[133]  M. Hirayama,et al.  Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12 , 2012 .

[134]  A. Orliukas,et al.  Ionic conductivity of Li1.3Al0.3 − xScxTi1.7(PO4)3 (x = 0, 0.1, 0.15, 0.2, 0.3) solid electrolytes prepared by Pechini process , 2012 .

[135]  K. Knight,et al.  Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12. , 2012, Dalton transactions.

[136]  V. Thangadurai,et al.  Enhancing Li Ion Conductivity of Garnet-Type Li5La3Nb2O12 by Y- and Li-Codoping: Synthesis, Structure, Chemical Stability, and Transport Properties , 2012 .

[137]  Xiaohui Yu,et al.  Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. , 2012, Chemical communications.

[138]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[139]  Khang Hoang,et al.  Origin of the structural phase transition in Li7La3Zr2O12. , 2012, Physical review letters.

[140]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[141]  P. Heitjans,et al.  Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry , 2012 .

[142]  Yutao Li,et al.  Optimizing Li+ conductivity in a garnet framework , 2012 .

[143]  Yutao Li,et al.  Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 , 2012 .

[144]  J. Sakamoto,et al.  Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12 , 2012 .

[145]  B. Roling,et al.  New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium ortho-Sulfidostannate Li4SnS4 , 2012 .

[146]  John B. Goodenough,et al.  Rechargeable batteries: challenges old and new , 2012, Journal of Solid State Electrochemistry.

[147]  C. Grey,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[148]  Stefan Adams,et al.  Structural requirements for fast lithium ion migration in Li10GeP2S12 , 2012 .

[149]  Tetsuro Kobayashi,et al.  Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte , 2012 .

[150]  Ming Xu,et al.  Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .

[151]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[152]  Jeff Wolfenstine,et al.  The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition Li7La3Zr2O12 , 2012 .

[153]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[154]  R. Murugan,et al.  High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet , 2011 .

[155]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[156]  J. Janek,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[157]  J. Maier,et al.  Single alkaline-ion (Li(+), Na(+)) conductors by ion exchange of proton-conducting ionomers and polyelectrolytes. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[158]  Z. Wen,et al.  Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries , 2011 .

[159]  K. Arbi,et al.  Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy. , 2011, Dalton transactions.

[160]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[161]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[162]  W. Jaegermann,et al.  Temperature dependent phosphorous oxynitride growth for all-solid-state batteries , 2011 .

[163]  J. Maier,et al.  Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three‐dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements , 2011 .

[164]  F. Rosciano,et al.  Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics , 2011 .

[165]  K. Tadanaga,et al.  Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode , 2011 .

[166]  T. Shiga,et al.  A lithium phosphorous oxynitride (LiPON) film sputtered from unsintered Li3PO4 powder target , 2011 .

[167]  A. Hayashi,et al.  Crystallization Process for Superionic Li7P3S11 Glass–Ceramic Electrolytes , 2011 .

[168]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[169]  Yuanhua Lin,et al.  Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents , 2011 .

[170]  B. Pecquenard,et al.  Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance , 2011 .

[171]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[172]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[173]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[174]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[175]  Li Lu,et al.  Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3 , 2010 .

[176]  Joykumar S. Thokchom,et al.  The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic , 2010 .

[177]  Hongxia Geng,et al.  Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte , 2010 .

[178]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[179]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[180]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[181]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[182]  E. Kendrick,et al.  Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. , 2009, Dalton transactions.

[183]  C. Nan,et al.  The preparation and conductivity properties of Li0.5La0.5TiO3/inactive second phase composites , 2009 .

[184]  Hongxia Geng,et al.  Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica , 2008 .

[185]  Binod Kumar,et al.  Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic , 2008 .

[186]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[187]  E. Kendrick,et al.  Synthesis and conductivities of the garnet-related Li ion conductors, Li5Ln3Sb2O12 (Ln = La, Pr, Nd, Sm, Eu) , 2008 .

[188]  J. Sun,et al.  New lithium ion conductor, thio-LISICON lithium zirconium sulfide system , 2008 .

[189]  K. Fung,et al.  Roles of lithium ions and La/Li-site vacancies in sinterability and total ionic conduction properties of polycrystalline Li3xLa2/3−xTiO3 solid electrolytes (0.21 ≤ 3x ≤ 0.50) , 2008 .

[190]  E. Kendrick,et al.  Synthesis and characterisation of the garnet-related Li ion conductor, Li5Nd3Sb2O12 , 2008 .

[191]  M. Armand,et al.  Building better batteries , 2008, Nature.

[192]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[193]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[194]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[195]  H. Meyer,et al.  The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. , 2007, Physical chemistry chemical physics : PCCP.

[196]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[197]  H. Fuchs,et al.  Fast interfacial ionic conduction in nanostructured glass ceramics. , 2007, Physical review letters.

[198]  E. Cussen,et al.  Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x ≤ 1.6) , 2007 .

[199]  Joykumar S. Thokchom,et al.  Ionically Conducting Composite Membranes from the Li2O–Al2O3–TiO2–P2O5 Glass–Ceramic , 2007 .

[200]  Liquan Chen,et al.  Iodine ion transport in solid electrolyte LiI(C3H5NO)2: a first-principles identification , 2007 .

[201]  Y. Morii,et al.  Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites , 2006 .

[202]  A. Ahmad,et al.  Synthesis, Sintering, and Microstructure of Nasicons , 2006 .

[203]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[204]  G. Chen,et al.  Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu) , 2006 .

[205]  Chun-hua Chen,et al.  Electrochemical Characterizations of Commercial LiCoO2 Powders with Surface Modified by Li3PO4 Nanoparticles , 2006 .

[206]  Venkataraman Thangadurai,et al.  Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 , 2006 .

[207]  Joykumar S. Thokchom,et al.  Microstructural effects on the superionic conductivity of a lithiated glass-ceramic , 2006 .

[208]  B. Pecquenard,et al.  Influence of sputtering conditions on ionic conductivity of LiPON thin films , 2006 .

[209]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[210]  C. Grey,et al.  Effect of A-site cation radius on ordering of BX6 octahedra in (K,Na)MgF3 perovskite , 2005 .

[211]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[212]  N. Inoue,et al.  Structure and lithium ionic conduction mechanism in La4/3−yLi3yTi2O6 , 2005 .

[213]  J. Maier,et al.  On the Tammann–Rule , 2005 .

[214]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[215]  Yukio Morii,et al.  Crystal Structure and Diffusion Path in the Fast Lithium-Ion Conductor La0.62Li0.16TiO3 , 2005 .

[216]  M. Nakayama,et al.  Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li,La)TiO3. , 2005, The journal of physical chemistry. B.

[217]  A. Yoshiasa,et al.  Electrical Conductivities and Conduction Mechanisms of Perovskite‐type Na1‐xKxMgF3 (x = 0, 0.1, 1) and KZnF3 , 2005 .

[218]  V. Thangadurai,et al.  Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet-Like Structure , 2005 .

[219]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[220]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[221]  Joachim Maier,et al.  Second Phase Effects on the Conductivity of Non‐Aqueous Salt Solutions: “Soggy Sand Electrolytes” , 2004 .

[222]  Seong‐Hyeon Hong,et al.  Spark Plasma Sintering (SPS) of NASICON Ceramics , 2004 .

[223]  V. Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[224]  L. He,et al.  Effects of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3−x)1+y/2(MyTi1−y)O3 (M=Al, Cr) , 2003 .

[225]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[226]  M. Alario-Franco,et al.  New La2/3-xSrxLixTiO3 solid solution: Structure, microstructure, and Li+ conductivity , 2003 .

[227]  S. Ito,et al.  Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system , 2002 .

[228]  R. O. Fuentes,et al.  Optimised NASICON ceramics for Na+ sensing , 2002 .

[229]  E. Morán,et al.  A New La2/3LixTi1-xAlxO3 Solid Solution: Structure, Microstructure, and Li+ Conductivity , 2002 .

[230]  Y. Morii,et al.  Crystal Structure of a Lithium Ion-Conducting Perovskite La2/3−xLi3xTiO3 (x=0.05) , 2002 .

[231]  G. Adachi,et al.  Ionic conducting lanthanide oxides. , 2002, Chemical reviews.

[232]  K. Arbi,et al.  Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A Parallel NMR and Electric Impedance Study , 2002 .

[233]  H. Groult,et al.  Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn2O4 positive and V2O5 negative electrodes , 2001 .

[234]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[235]  M. Crosnier-Lopez,et al.  Lithium Ion Conductivity in New Perovskite Oxides [AgyLi1-y]3xLa2/3-x1/3-2xTiO3(x= 0.09 and 0 ≤y≤ 1) , 2001 .

[236]  D. Macfarlane,et al.  Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2−x(PO4)3: impedance, X-ray and NMR studies , 2000 .

[237]  G. Rao,et al.  XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics , 2000 .

[238]  J. Ibarra Influence of composition on the structure and conductivity of the fast ionic conductors La2/3−xLi3xTiO3 (0.03≤x≤0.167) , 2000 .

[239]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[240]  M. Catti,et al.  Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α'-LiZr2(PO4)3 , 1999 .

[241]  T. L. Mercier,et al.  Neutron powder diffraction data for low- and high-temperature NASICON phases of LiM2(PO4)3 (M=Hf, Sn) , 1999, Powder Diffraction.

[242]  H. Kawai,et al.  Lithium ion conductivity of polycrystalline perovskite La0.67−xLi3xTiO3 with ordered and disordered arrangements of the A-site ions , 1998 .

[243]  Jin Gyun Kim,et al.  Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1−xMxO3 (M=Sn, Zr, Mn, Ge) , 1998 .

[244]  Jie Fu Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5 , 1997 .

[245]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[246]  Yo Kobayashi,et al.  Ionic conductivity enhancement in LiTi2(PO4)3-based composite electrolyte by the addition of lithium nitrate , 1997 .

[247]  E. R. Losilla,et al.  Reversible Triclinic-Rhombohedral Phase Transition in LiHf2(PO4)3: Crystal Structures from Neutron Powder Diffraction , 1997 .

[248]  J. Sanz,et al.  Structural changes in the compounds LiM{sub 2}{sup IV}(PO{sub 4}){sub 3} (M{sup IV}=Ge, Ti, Sn, and Hf) as followed by {sup 31}P and {sup 7}Li NMR , 1997 .

[249]  Jie Fu Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .

[250]  M. Crosnier-Lopez,et al.  Structural and Microstructural Studies of the Series La2/3−xLi3x□1/3−2xTiO3 , 1996 .

[251]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[252]  O. Bohnké,et al.  Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate , 1996 .

[253]  J. Sanz,et al.  Lithium mobility in the NASICON-type compound by nuclear magnetic resonance and impedance spectroscopies , 1996 .

[254]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[255]  Maier,et al.  Simple phenomenological approach to premelting and sublattice melting in Frenkel disordered ionic crystals. , 1995, Physical review. B, Condensed matter.

[256]  Y. Sadaoka,et al.  The Electrical Properties of Ceramic Electrolytes for LiM x Ti2 − x ( PO 4 ) 3 + yLi2 O , M = Ge , Sn , Hf , and Zr Systems , 1993 .

[257]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[258]  S. Kondo,et al.  Electrochemical behaviors of Li+ ion conductor, Li3PO4-Li2S-SiS2 , 1993 .

[259]  Y. Sadaoka,et al.  Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and In Systems. , 1992 .

[260]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[261]  M. Jansen,et al.  Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate , 1992 .

[262]  H. Kageyama,et al.  Li+-ion conductivity of Li1+xMxTi2−x(PO4)3 (M: Sc3+, Y3+) , 1992 .

[263]  A. Levasseur,et al.  Ionic conduction in B2S3-Li2S-LiI glasses , 1992 .

[264]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[265]  Y. Sadaoka,et al.  Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) , 1991 .

[266]  P. Hagenmuller,et al.  Structure and thermal expansion of LiGe2(PO4)3 , 1991 .

[267]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[268]  F. Krok,et al.  On some properties of NASICON doped with MgO and CoO , 1989 .

[269]  B. Ahn,et al.  Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4 , 1989 .

[270]  G. Rao,et al.  Ionic conductivity studies on Li1−xM2−xM′xP3O12 (H = Hf, Zr; M′ = Ti, Nb) , 1989 .

[271]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[272]  D. Mazza Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .

[273]  K. Hayashi,et al.  Crystal structures of La3Li5M2O12 (M=Nb, Ta) , 1988 .

[274]  E. Prince,et al.  Neutron powder diffraction study of solid solution Li1+xTi2−xInxP3O12: I. 0.0 ≤ x ≤ 0.4 , 1988 .

[275]  K. Kreuer,et al.  NASICON solid electrolytes: Part IV Chemical durability , 1986 .

[276]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[277]  E. Rietman,et al.  Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+xHf2SixP3−xO12 , 1984 .

[278]  R. S. Gordon,et al.  Effect of Decomposition on the Densification and Properties of Nasicon Ceramic Electrolytes , 1983 .

[279]  P. Hagenmuller,et al.  Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .

[280]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[281]  L. Boehm,et al.  A new method for the preparation of fast-conducting, reactive glass systems , 1981 .

[282]  M. Shibata,et al.  Solid-state ionics - conductivities of Na+ ion conductors based on NASICON , 1980 .

[283]  Michel Ribes,et al.  Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .

[284]  B. Huberman,et al.  Superionic conductors: Transitions, structures, dynamics , 1979 .

[285]  K. Y. Cheung,et al.  Ionic conductivity of Li14Zn(GeO44 (Lisicon) , 1978 .

[286]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[287]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[288]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[289]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[290]  V. Voronov,et al.  Nuclear magnetic resonance study of 19F motion in CsPbF3 , 1976 .

[291]  Kenji Uchino,et al.  X-ray study of the deficient perovskite La23TiO3 , 1974 .

[292]  C. Liang Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .

[293]  C. Liang,et al.  Ionic Conduction in Calcium Doped Polycrystalline Lithium Iodide , 1971 .

[294]  Frank Tietz,et al.  Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries , 2015 .

[295]  Sehee Lee,et al.  Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor , 2014 .

[296]  A. Kuwabara,et al.  Domain boundary structures in lanthanum lithium titanates , 2014 .

[297]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[298]  A. Tiwari,et al.  Synthesis of Cubic Phase Li7La3Zr2O12 Electrolyte for Solid-State Lithium-Ion Batteries , 2012 .

[299]  Wei Lai,et al.  High Ionic Conductivity Lithium Garnet Oxides of Li7−xLa3Zr2−xTaxO12 Compositions , 2012 .

[300]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[301]  H. Hayakawa,et al.  Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure , 2010 .

[302]  Atsushi Sakuda,et al.  Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated with Li2O-SiO2 Glasses , 2008 .

[303]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[304]  D. Chehimi,et al.  Lithium Mobility in Li1.2Ti1.8R0.2(PO4)3 Compounds (R = Al, Ga, Sc, In) as Followed by NMR and Impedance Spectroscopy , 2004 .

[305]  V. Thangadurai,et al.  Effect of B-site substitution of (Li,La)TiO3 perovskites by di-, tri-, tetra- and hexavalent metal ions on the lithium ion conductivity , 2000 .

[306]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[307]  J. Maier,et al.  Thermodynamics of NASICON (Na1+xZr2SixP3−xO12) , 1988 .

[308]  Jürgen Köhler,et al.  Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .