Expansions of generalized Euler's constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only
暂无分享,去创建一个
[1] O. Schlömilch,et al. Recherches sur les coefficients des facultés analytiques. , 2022 .
[2] The Collected Mathematical Papers: On a Theorem for the Development of a Factorial , 1853 .
[3] L. Schläfli. Ergänzung zu der Abhandlung über die Entwickelung des Products 1.(1+x)(1+2x)(1+3x)...(1+(n-1)x) = (x) in Band XLIII dieses Journals. , 1867 .
[4] Compendium der höheren Analysis , 1868 .
[5] 1. Note on a Formula for Δ n 0 i /n i when n, i are very large Numbers. , 1888 .
[6] E. Netto,et al. Lehrbuch der Combinatorik , 1902 .
[7] M. Niels Nielsen. Recherches sur les polynomes et les nombres de Stirling , 1904 .
[8] É. Picard,et al. Correspondance d'Hermite et de Stieltjes , 2022 .
[9] N. Nielsen,et al. Handbuch der Theorie der Gammafunktion , 1906 .
[10] T. A. Bromwich. An Introduction To The Theory Of Infinite Series , 1908 .
[12] Charles Tweedie. The Stirling Numbers and Polynomials , 1918 .
[13] On Laplace's and Gauss' summation-formulas , 1924 .
[14] N. E. Nörlund. Vorlesungen über Differenzenrechnung , 1924 .
[15] J. Littlewood,et al. Collected Papers of Srinivasa Ramanujan , 1929, Nature.
[16] Helmut Hasse,et al. Ein Summierungsverfahren für die Riemannsche ζ-Reihe , 1930 .
[17] L. M. Milne-Thomson,et al. The Calculus Of Finite Differences , 1934 .
[18] Charles Jordan. On Stirling's Numbers , 1933 .
[19] Philip M. Morse,et al. Methods of Mathematical Physics , 1947, The Mathematical Gazette.
[20] A. Erdélyi,et al. The asymptotic expansion of a ratio of gamma functions. , 1951 .
[21] S. C. Van Veen. Asymptotic Expansion of the Generalized Bernoulli Numbers Bn(n−1) for Large Values of n (n Integer) , 1951 .
[22] Leonard Carlitz,et al. Some theorems on Bernoulli numbers of higher order. , 1952 .
[23] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[24] Some theorems on Bernoulli and Euler numbers of higher order , 1954 .
[25] W. E. Briggs,et al. The Power Series Coefficients of ζ(s) , 1955 .
[26] Arithmetic properties of Bernoulli numbers of higher order , 1955 .
[27] K. Knopp. Infinite sequences and series , 1957 .
[28] W. Hayman. A Generalisation of Stirling's Formula. , 1956 .
[29] H. T. Davis. The Approximation of Logarithmic Numbers , 1957 .
[30] John Riordan,et al. Introduction to Combinatorial Analysis , 1958 .
[31] L. Moser,et al. Asymptotic Development of the Stirling Numbers of the First Kind , 1958 .
[32] H. W. Gould,et al. Stirling number representation problems , 1960 .
[33] N. E. Nörlund. Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli , 1961 .
[34] Granino A. Korn,et al. Mathematical handbook for scientists and engineers , 1961 .
[35] G. Boole,et al. Calculus of Finite Differences , 1961 .
[36] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[37] H. W. Gould. An identity involving stirling numbers , 1965 .
[38] Table of Gregory Coefficients , 1966 .
[39] A Series Representation for Euler's Constant , 1967 .
[40] Granino A. Korn,et al. Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .
[41] Some Series for Euler's Constant , 1969 .
[42] Abraham de Moivre. Miscellanea analytica de seriebus et quadraturis. ... , 1970 .
[43] J. Todd,et al. The Stieltjes Constants , 1972 .
[44] K. Knopp,et al. Theory and Applications of Infinite Series , 1972 .
[45] Bruce C. Berndt,et al. On the Hurwitz zeta-function , 1972 .
[46] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[47] F. Olver. Asymptotics and Special Functions , 1974 .
[48] D. H. Lehmer. Euler constants for arithmetic progressions , 1975 .
[49] N. Bleistein,et al. Asymptotic Expansions of Integrals , 1975 .
[50] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[51] Herman Heine Goldstine,et al. A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .
[52] G. Pólya,et al. Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .
[53] Formulas for factorial $N$ , 1982 .
[54] L. V. Bellavista. On the Stirling numbers of the first kind arising from probabilistic and statistical problems , 1983 .
[55] An integral representation of the generalized Euler-Mascheroni constants , 1985 .
[56] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[57] Andreas N. Philippou,et al. Applications of Fibonacci Numbers , 2012 .
[58] On the Power Series Coefficients of the Riemann Zeta Function , 1989 .
[59] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[60] Stirling Numbers, Central Factorial Numbers, and Representations of the Riemann Zeta Function , 1991 .
[61] E. Bender,et al. Foundations of combinatorics with applications , 1991 .
[62] Karl Dilcher,et al. Generalized Euler Constants for Arithmetical Progressions , 1992 .
[63] Nico M. Temme,et al. Asymptotic estimates of Stirling numbers , 1993 .
[64] Donald E. Knuth. Two notes on notation , 1992 .
[65] Jean-Pierre Ramis,et al. Séries divergentes et théories asymptotiques , 1993 .
[66] Theory of Series , 1993 .
[67] Herbert S. Wilf. The Asymptotic Behavior of the Stirling Numbers of the First Kind , 1993, J. Comb. Theory, Ser. A.
[68] Zhang Nan-Yue. Kenneth S. Williams Some results on the generalized Stieltjes constants , 1994 .
[69] Jonathan Sondow,et al. Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series , 1994 .
[70] Note on the Generalized Euler Constants , 1994 .
[71] Histoire d'Algorithmes : du caillou à la puce , 1994 .
[72] Li-Chien Shen,et al. Remarks on some integrals and series involving the Stirling numbers and () , 1995 .
[73] R. Guy,et al. The Book of Numbers , 2019, The Crimean Karaim Bible.
[74] Hsien-Kuei Hwang,et al. Asymptotic expansions for the Stirling numbers of the first kind , 1995 .
[75] Victor S. Adamchik,et al. On Stirling numbers and Euler sums , 1997 .
[76] Arnold Adelberg. 2-Adic Congruences of Nörlund Numbers and of Bernoulli Numbers of the Second Kind , 1998 .
[77] A. Timashov. On asymptotic expansions of Stirling numbers of the first and second kinds , 1998 .
[78] Eric W. Weisstein,et al. The CRC concise encyclopedia of mathematics , 1999 .
[79] A MATRIX REPRESENTATION FOR EULER'S CONSTANT, GAMMA , 1999 .
[80] Ken-ichi Sato,et al. Some Identities Involving Bernoulli and Stirling Numbers , 2001 .
[81] Hari M. Srivastava,et al. Series Associated with the Zeta and Related Functions , 2001 .
[82] Rick Kreminski. Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants , 2003, Math. Comput..
[83] Khodabakhsh Hessami Pilehrood,et al. Criteria for irrationality of generalized Euler's constant , 2004 .
[84] Renzo Sprugnoli,et al. The Cauchy numbers , 2006, Discret. Math..
[85] Daniel B. Grünberg. On Asymptotics, Stirling Numbers, Gamma Function and Polylogs , 2006 .
[86] Donal F. Connon. Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. Volume VI , 2007 .
[87] Michael O. Rubinstein. Identities for the Riemann zeta function , 2008 .
[88] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[89] A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers , 2008 .
[90] Georges Bouligand,et al. Leçons sur les Séries Divergentes , 2009 .
[91] Some applications of the Stieltjes constants , 2009, 0901.2083.
[92] V. Kowalenko. Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion , 2009 .
[93] Mark W. Coffey,et al. Addison-type series representation for the Stieltjes constants , 2009, 0912.2391.
[94] Feng-Zhen Zhao. Sums of products of Cauchy numbers , 2009, Discret. Math..
[95] Arthur Cayley. The Collected Mathematical Papers: On some Numerical Expansions , 2009 .
[96] Mark W. Coffey,et al. Series representations for the Stieltjes constants , 2009, 0905.1111.
[97] Guy Louchard. Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach , 2010, Discret. Math. Theor. Comput. Sci..
[98] J. Adell. Asymptotic estimates for Stieltjes constants: a probabilistic approach , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[99] Victor Kowalenko,et al. Properties and Applications of the Reciprocal Logarithm Numbers , 2010 .
[100] Gergýo Nemes. An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind , 2011 .
[101] A formula connecting the Bernoulli numbers with the Stieltjes constants , 2011, 1104.4772.
[102] Charles Knessl,et al. An effective asymptotic formula for the Stieltjes constants , 2011, Math. Comput..
[103] Charles Knessl,et al. An asymptotic form for the Stieltjes constants gammak(a) and for a sum Sgamma(n) appearing under the Li criterion , 2011, Math. Comput..
[104] M. Rubinstein. Identities for the Hurwitz zeta function, Gamma function, and L-functions , 2012, 1206.1992.
[105] Marc-Antoine Coppo,et al. A new class of identities involving Cauchy numbers, harmonic numbers and zeta values , 2012 .
[106] Ibrahim M. Alabdulmohsin. Summability Calculus , 2012, 1209.5739.
[107] J. Lagarias. Euler's constant: Euler's work and modern developments , 2013, 1303.1856.
[108] Junesang Choi. Certain integral representations of Stieltjes constants γn , 2013, Journal of Inequalities and Applications.
[109] Carl Friedrich Gauss,et al. Carl Friedrich Gauss Werke , 2013 .
[110] Yıldıray Çelik,et al. Generalized TL-fuzzy rough rings via TL-fuzzy relational morphisms , 2013, Journal of Inequalities and Applications.
[111] The parameterized-Euler-constant function γα(z)☆ , 2013 .
[113] Explicit upper bounds for the Stieltjes constants , 2013 .
[114] Masanobu Kaneko,et al. Bernoulli Numbers and Zeta Functions , 2014 .
[115] Ladrón de Guevara,et al. Gompertz Constant, Gregory Coefficients and a Series of the Logarithm Function , 2014 .
[116] A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations , 2014 .
[117] Feng Qi,et al. An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind , 2014, 1402.2358.
[118] Iaroslav V. Blagouchine. Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1 , 2014, 1408.3902.
[119] L. Fekih-Ahmed. A New Effective Asymptotic Formula for the Stieltjes Constants , 2014, 1407.5567.