Expansions of generalized Euler's constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only

[1]  O. Schlömilch,et al.  Recherches sur les coefficients des facultés analytiques. , 2022 .

[2]  The Collected Mathematical Papers: On a Theorem for the Development of a Factorial , 1853 .

[3]  L. Schläfli Ergänzung zu der Abhandlung über die Entwickelung des Products 1.(1+x)(1+2x)(1+3x)...(1+(n-1)x) = (x) in Band XLIII dieses Journals. , 1867 .

[4]  Compendium der höheren Analysis , 1868 .

[5]  1. Note on a Formula for Δ n 0 i /n i when n, i are very large Numbers. , 1888 .

[6]  E. Netto,et al.  Lehrbuch der Combinatorik , 1902 .

[7]  M. Niels Nielsen Recherches sur les polynomes et les nombres de Stirling , 1904 .

[8]  É. Picard,et al.  Correspondance d'Hermite et de Stieltjes , 2022 .

[9]  N. Nielsen,et al.  Handbuch der Theorie der Gammafunktion , 1906 .

[10]  T. A. Bromwich An Introduction To The Theory Of Infinite Series , 1908 .

[11]  A Course of Modern Analysis: An introduction to the General Theory of Infinite Processes and of Analytical Functions; With an Account of the Principal Transcendental Functions , 1916 .

[12]  Charles Tweedie The Stirling Numbers and Polynomials , 1918 .

[13]  On Laplace's and Gauss' summation-formulas , 1924 .

[14]  N. E. Nörlund Vorlesungen über Differenzenrechnung , 1924 .

[15]  J. Littlewood,et al.  Collected Papers of Srinivasa Ramanujan , 1929, Nature.

[16]  Helmut Hasse,et al.  Ein Summierungsverfahren für die Riemannsche ζ-Reihe , 1930 .

[17]  L. M. Milne-Thomson,et al.  The Calculus Of Finite Differences , 1934 .

[18]  Charles Jordan On Stirling's Numbers , 1933 .

[19]  Philip M. Morse,et al.  Methods of Mathematical Physics , 1947, The Mathematical Gazette.

[20]  A. Erdélyi,et al.  The asymptotic expansion of a ratio of gamma functions. , 1951 .

[21]  S. C. Van Veen Asymptotic Expansion of the Generalized Bernoulli Numbers Bn(n−1) for Large Values of n (n Integer) , 1951 .

[22]  Leonard Carlitz,et al.  Some theorems on Bernoulli numbers of higher order. , 1952 .

[23]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[24]  Some theorems on Bernoulli and Euler numbers of higher order , 1954 .

[25]  W. E. Briggs,et al.  The Power Series Coefficients of ζ(s) , 1955 .

[26]  Arithmetic properties of Bernoulli numbers of higher order , 1955 .

[27]  K. Knopp Infinite sequences and series , 1957 .

[28]  W. Hayman A Generalisation of Stirling's Formula. , 1956 .

[29]  H. T. Davis The Approximation of Logarithmic Numbers , 1957 .

[30]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[31]  L. Moser,et al.  Asymptotic Development of the Stirling Numbers of the First Kind , 1958 .

[32]  H. W. Gould,et al.  Stirling number representation problems , 1960 .

[33]  N. E. Nörlund Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli , 1961 .

[34]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[35]  G. Boole,et al.  Calculus of Finite Differences , 1961 .

[36]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[37]  H. W. Gould An identity involving stirling numbers , 1965 .

[38]  Table of Gregory Coefficients , 1966 .

[39]  A Series Representation for Euler's Constant , 1967 .

[40]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[41]  Some Series for Euler's Constant , 1969 .

[42]  Abraham de Moivre Miscellanea analytica de seriebus et quadraturis. ... , 1970 .

[43]  J. Todd,et al.  The Stieltjes Constants , 1972 .

[44]  K. Knopp,et al.  Theory and Applications of Infinite Series , 1972 .

[45]  Bruce C. Berndt,et al.  On the Hurwitz zeta-function , 1972 .

[46]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[47]  F. Olver Asymptotics and Special Functions , 1974 .

[48]  D. H. Lehmer Euler constants for arithmetic progressions , 1975 .

[49]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[50]  R. Dingle Asymptotic expansions : their derivation and interpretation , 1975 .

[51]  Herman Heine Goldstine,et al.  A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .

[52]  G. Pólya,et al.  Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .

[53]  Formulas for factorial $N$ , 1982 .

[54]  L. V. Bellavista On the Stirling numbers of the first kind arising from probabilistic and statistical problems , 1983 .

[55]  An integral representation of the generalized Euler-Mascheroni constants , 1985 .

[56]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[57]  Andreas N. Philippou,et al.  Applications of Fibonacci Numbers , 2012 .

[58]  On the Power Series Coefficients of the Riemann Zeta Function , 1989 .

[59]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[60]  Stirling Numbers, Central Factorial Numbers, and Representations of the Riemann Zeta Function , 1991 .

[61]  E. Bender,et al.  Foundations of combinatorics with applications , 1991 .

[62]  Karl Dilcher,et al.  Generalized Euler Constants for Arithmetical Progressions , 1992 .

[63]  Nico M. Temme,et al.  Asymptotic estimates of Stirling numbers , 1993 .

[64]  Donald E. Knuth Two notes on notation , 1992 .

[65]  Jean-Pierre Ramis,et al.  Séries divergentes et théories asymptotiques , 1993 .

[66]  Theory of Series , 1993 .

[67]  Herbert S. Wilf The Asymptotic Behavior of the Stirling Numbers of the First Kind , 1993, J. Comb. Theory, Ser. A.

[68]  Zhang Nan-Yue Kenneth S. Williams Some results on the generalized Stieltjes constants , 1994 .

[69]  Jonathan Sondow,et al.  Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series , 1994 .

[70]  Note on the Generalized Euler Constants , 1994 .

[71]  Histoire d'Algorithmes : du caillou à la puce , 1994 .

[72]  Li-Chien Shen,et al.  Remarks on some integrals and series involving the Stirling numbers and () , 1995 .

[73]  R. Guy,et al.  The Book of Numbers , 2019, The Crimean Karaim Bible.

[74]  Hsien-Kuei Hwang,et al.  Asymptotic expansions for the Stirling numbers of the first kind , 1995 .

[75]  Victor S. Adamchik,et al.  On Stirling numbers and Euler sums , 1997 .

[76]  Arnold Adelberg 2-Adic Congruences of Nörlund Numbers and of Bernoulli Numbers of the Second Kind , 1998 .

[77]  A. Timashov On asymptotic expansions of Stirling numbers of the first and second kinds , 1998 .

[78]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[79]  A MATRIX REPRESENTATION FOR EULER'S CONSTANT, GAMMA , 1999 .

[80]  Ken-ichi Sato,et al.  Some Identities Involving Bernoulli and Stirling Numbers , 2001 .

[81]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .

[82]  Rick Kreminski Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants , 2003, Math. Comput..

[83]  Khodabakhsh Hessami Pilehrood,et al.  Criteria for irrationality of generalized Euler's constant , 2004 .

[84]  Renzo Sprugnoli,et al.  The Cauchy numbers , 2006, Discret. Math..

[85]  Daniel B. Grünberg On Asymptotics, Stirling Numbers, Gamma Function and Polylogs , 2006 .

[86]  Donal F. Connon Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. Volume VI , 2007 .

[87]  Michael O. Rubinstein Identities for the Riemann zeta function , 2008 .

[88]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[89]  A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers , 2008 .

[90]  Georges Bouligand,et al.  Leçons sur les Séries Divergentes , 2009 .

[91]  Some applications of the Stieltjes constants , 2009, 0901.2083.

[92]  V. Kowalenko Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion , 2009 .

[93]  Mark W. Coffey,et al.  Addison-type series representation for the Stieltjes constants , 2009, 0912.2391.

[94]  Feng-Zhen Zhao Sums of products of Cauchy numbers , 2009, Discret. Math..

[95]  Arthur Cayley The Collected Mathematical Papers: On some Numerical Expansions , 2009 .

[96]  Mark W. Coffey,et al.  Series representations for the Stieltjes constants , 2009, 0905.1111.

[97]  Guy Louchard Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach , 2010, Discret. Math. Theor. Comput. Sci..

[98]  J. Adell Asymptotic estimates for Stieltjes constants: a probabilistic approach , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[99]  Victor Kowalenko,et al.  Properties and Applications of the Reciprocal Logarithm Numbers , 2010 .

[100]  Gergýo Nemes An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind , 2011 .

[101]  A formula connecting the Bernoulli numbers with the Stieltjes constants , 2011, 1104.4772.

[102]  Charles Knessl,et al.  An effective asymptotic formula for the Stieltjes constants , 2011, Math. Comput..

[103]  Charles Knessl,et al.  An asymptotic form for the Stieltjes constants gammak(a) and for a sum Sgamma(n) appearing under the Li criterion , 2011, Math. Comput..

[104]  M. Rubinstein Identities for the Hurwitz zeta function, Gamma function, and L-functions , 2012, 1206.1992.

[105]  Marc-Antoine Coppo,et al.  A new class of identities involving Cauchy numbers, harmonic numbers and zeta values , 2012 .

[106]  Ibrahim M. Alabdulmohsin Summability Calculus , 2012, 1209.5739.

[107]  J. Lagarias Euler's constant: Euler's work and modern developments , 2013, 1303.1856.

[108]  Junesang Choi Certain integral representations of Stieltjes constants γn , 2013, Journal of Inequalities and Applications.

[109]  Carl Friedrich Gauss,et al.  Carl Friedrich Gauss Werke , 2013 .

[110]  Yıldıray Çelik,et al.  Generalized TL-fuzzy rough rings via TL-fuzzy relational morphisms , 2013, Journal of Inequalities and Applications.

[111]  The parameterized-Euler-constant function γα(z)☆ , 2013 .

[112]  On two problems concerning the Laurent-Stieltjes coefficients of Dirichlet L-series : Sur deux problèmes concernant les coefficients de Laurent-Stieltjes des séries L de Dirichlet , 2013 .

[113]  Explicit upper bounds for the Stieltjes constants , 2013 .

[114]  Masanobu Kaneko,et al.  Bernoulli Numbers and Zeta Functions , 2014 .

[115]  Ladrón de Guevara,et al.  Gompertz Constant, Gregory Coefficients and a Series of the Logarithm Function , 2014 .

[116]  A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations , 2014 .

[117]  Feng Qi,et al.  An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind , 2014, 1402.2358.

[118]  Iaroslav V. Blagouchine Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1 , 2014, 1408.3902.

[119]  L. Fekih-Ahmed A New Effective Asymptotic Formula for the Stieltjes Constants , 2014, 1407.5567.