Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs

We elaborate on a nonlinear explicit two-step P-stable method of fourth algebraic order and varying phase-lag order for solving one-dimensional second-order linear periodic initial value problems (IVPs) of ordinary differential equations. Using special vector arithmetic with respect to an analytic function, the method can be extended to be vector applicable for multidimensional problems. Numerical results to illustrate the efficiency of the method are presented.

[1]  Zhongcheng Wang P-stable linear symmetric multistep methods for periodic initial-value problems , 2005, Comput. Phys. Commun..

[2]  Tom E. Simos An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second-order pacific initial-value problems , 1992 .

[3]  Jianlin Xia,et al.  New vector forms of elemental functions with Taylor series , 2003, Appl. Math. Comput..

[4]  T. E. Simos A four-step method for the numerical solution of the Schro¨dinger equation , 1990 .

[5]  H. Meyer,et al.  On a class of P-stable mono-implicit Runge-Kutta-Nystro¨m methods , 1998 .

[6]  R. Thomas,et al.  Phase properties of high order, almostP-stable formulae , 1984 .

[7]  Jianlin Xia,et al.  An explicit two-step method exact for the scalar test equation y′ = λy , 2000 .

[8]  Xinyuan Wu,et al.  A sixth-order A-stable explicit one-step method for stiff systems , 1998 .

[9]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[10]  Jianlin Xia,et al.  The vector form of a sixth-order A-stable explicit one-step method for stiff problems , 2000 .

[11]  E. Hairer Unconditionally stable explicit methods for parabolic equations , 1980 .

[12]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[13]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[14]  Albert Wambecq,et al.  Rational Runge-Kutta methods for solving systems of ordinary differential equations , 2005, Computing.

[15]  Xinyuan Wu,et al.  A two-step explicit P-stable method for solving second order initial value problems , 2003, Appl. Math. Comput..

[16]  Xinyuan Wu,et al.  A two-step explicit P-stable method of high phase-lag order for second order IVPs , 2004, Appl. Math. Comput..

[17]  U. Ananthakrishnaiah P-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems , 1987 .

[18]  P. Wynn,et al.  Acceleration techniques for iterated vector and matrix problems : (mathematics of computation, _1_6(1962), nr 79, p 301-322) , 1962 .

[19]  John P. Coleman,et al.  Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[20]  M. M. Chawla,et al.  Two-step fourth-order P-stable methods with phase-lag of order six for y ″=( t,y ) , 1986 .

[21]  M. M. Chawla,et al.  High-accuracy P-stable Methods for y″ = f(t, y) , 1985 .

[22]  A. D. Raptis,et al.  Two-step methods for the numerical solution of the Schrödinger equation , 1982, Computing.

[23]  E. Hairer Unconditionally stable methods for second order differential equations , 1979 .

[24]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[25]  Xinyuan Wu,et al.  A two-step explicit P-stable method of high phase-lag order for linear periodic IVPs , 2007 .