Mixed mode cohesive law

A traction-separation relation to model the fracture process is presented. The cohesive law captures the linear elastic and softening behaviour prior to fracture. It also allows for different fracture parameters, such as fracture energy, strength and critical separation in different mode mixities. Thus, the fracture process in mode I (peel), in mode II (shear) or in mixed mode (a combination of peel and shear) can be modelled without the limitation of a common fracture energy in peel and shear. Examples are given in form of FE- implementations of the normalised cohesive law, namely for the Unsymmetrical Double Cantilever Beam (UDCB) specimen and the Mixed-mode double Cantilever Beam (MCB) specimen. Both specimens are adhesively bonded and loaded in mixed-mode.

[1]  M. D. Thouless,et al.  The effects of geometry and material properties on the fracture of single lap-shear joints , 2002 .

[2]  J. L. Högberg,et al.  Mechanical Behaviour of Single-Layer Adhesive Joints : an integrated approach , 2004 .

[3]  Samit Roy,et al.  A Coupled Hygrothermal Cohesive-Layer Constitutive Model for Simulating Debond Growth , 2003 .

[4]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[5]  C. Liu,et al.  The cohesive law for the particle/matrix interfaces in high explosives , 2005 .

[6]  Chad M. Landis,et al.  Constraint effects in adhesive joint fracture , 2005 .

[7]  Jacobsen,et al.  A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments , 2004 .

[8]  A. Waas,et al.  Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite , 2006 .

[9]  Viggo Tvergaard,et al.  On the toughness of ductile adhesive joints , 1996 .

[10]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[11]  H. Chai Interfacial mixed-mode fracture of adhesive bonds undergoing large deformation , 2003 .

[12]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[13]  Ingo Scheider,et al.  Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation , 2013 .

[14]  Ronald C. Averill,et al.  A mesh-independent interface technology for simulation of mixed-mode delamination growth , 2004 .

[15]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[16]  Martin Y.M. Chiang,et al.  A CRACK PROPAGATION CRITERION BASED ON LOCAL SHEAR STRAIN IN ADHESIVE BONDS SUBJECTED TO SHEAR , 1996 .

[17]  R. Narasimhan,et al.  Experimental and numerical investigations of mixed mode crack growth resistance of a ductile adhesive joint , 2002 .

[18]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[19]  Ulf Stigh,et al.  Specimen proposals for mixed mode testing of adhesive layer , 2006 .

[20]  Ulf Stigh,et al.  Shear behaviour of adhesive layers , 2007 .

[21]  Bent F. Sørensen,et al.  Determination of cohesive laws by the J integral approach , 2003 .

[22]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[23]  Ulf Stigh,et al.  The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces , 2004 .

[24]  R. Narasimhan,et al.  An experimental investigation of constraint effects on mixed mode fracture initiation in a ductile aluminium alloy , 1999 .

[25]  J. Heerens,et al.  Three-dimensional modeling of ductile crack growth: Cohesive zone parameters and crack tip triaxiality , 2005 .