A modified monotonicity-preserving high-order scheme with application to computation of multi-phase flows

Abstract The monotonicity preserving (MP) polynomial-based reconstruction scheme with Runge-Kutta time stepping by Suresh and Huynh (1997) has been applied extensively in computational fluid dynamics for solving hyperbolic partial differential equations and other convection-dominated problems. However, despite of its algorithmic simplicity in achieving a desired high-order of accuracy, the MP scheme is shown to lose the accuracy and robustness for a long-term computation of flows containing complex smooth structures interspersed with discontinuities. In this paper, the original MP scheme is first reviewed with a focus on the potential causes that lead to its failure. We then propose an improved MP scheme that can overcome the weakness in the MP scheme. The proposed MP scheme is constructed so that it can bypass smooth extrema without loss of accuracy while preserving monotonicity and properly reducing the order of accuracy near discontinuities. Various challenging scalar advection test cases are considered to demonstrate the performance of the presented method. Numerical results reveal that it achieves the highly accurate solutions in smooth parts of the flow and yields a significant improvement in accuracy and shape-preserving property. Moreover, the successful application to several classes of two- and three-dimensional unsteady multi-phase flows highlights the potential of the present method for resolving both sharp and complex interface deformations.

[1]  G. A. Gerolymos,et al.  Very-high-order weno schemes , 2009, J. Comput. Phys..

[2]  Zeyao Mo,et al.  Hybrid monotonicity-preserving piecewise parabolic method for compressible Euler equations , 2017 .

[3]  Meng-Sing Liou,et al.  Integration of Navier-Stokes Equations Using Dual Time Stepping and a Multigrid Method , 1995 .

[4]  Yufeng Yao,et al.  Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner , 2015 .

[5]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[6]  Sharath S. Girimaji,et al.  WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence , 2013, J. Comput. Phys..

[7]  Fei Liao,et al.  Optimized low-dissipation and low-dispersion schemes for compressible flows , 2018, J. Comput. Phys..

[8]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[9]  Christian Tenaud,et al.  High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations , 2004 .

[10]  Olivier Roussel,et al.  Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme , 2015 .

[11]  Axel Voigt,et al.  Benchmark computations of diffuse interface models for two‐dimensional bubble dynamics , 2012 .

[12]  Åsmund Ervik,et al.  Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme , 2017, J. Comput. Phys..

[13]  Cong-Tu Ha,et al.  Numerical simulations of compressible flows using multi-fluid models , 2015 .

[14]  Tim Colonius,et al.  Finite-volume WENO scheme for viscous compressible multicomponent flows , 2014, J. Comput. Phys..

[15]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[16]  Huanan Yang,et al.  An artificial compression method for ENO schemes - The slope modification method. [essentially nonoscillatory , 1990 .

[17]  Bin Chen,et al.  A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill , 2017 .

[18]  J. H. M. ten Thije Boonkkamp,et al.  Embedded WENO: A design strategy to improve existing WENO schemes , 2017, J. Comput. Phys..

[19]  Mark H. Carpenter,et al.  Computational Considerations for the Simulation of Shock-Induced Sound , 1998, SIAM J. Sci. Comput..

[20]  Eckart Meiburg,et al.  A numerical study of the convergence properties of ENO schemes , 1990 .

[21]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[22]  Cong Huang,et al.  A simple smoothness indicator for the WENO scheme with adaptive order , 2018, J. Comput. Phys..

[23]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[24]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[25]  Chi-Wang Shu,et al.  Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems , 2006, J. Sci. Comput..

[26]  A. Chinnayya,et al.  A computational study of the interaction of gaseous detonations with a compressible layer , 2017 .

[27]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[28]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[29]  Yuxi Chen,et al.  A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids , 2016, J. Comput. Phys..

[30]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[31]  Rong Wang,et al.  A New Mapped Weighted Essentially Non-oscillatory Scheme , 2012, J. Sci. Comput..

[32]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[33]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[34]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[35]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[36]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[37]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[38]  Marcel Vinokur,et al.  Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems , 2006, J. Comput. Phys..

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  Alain Lerat An efficient high-order compact scheme for the unsteady compressible Euler and Navier-Stokes equations , 2016, J. Comput. Phys..

[41]  Ming Yu,et al.  A new weighting method for improving the WENO‐Z scheme , 2018 .

[42]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[43]  A. J. Kriel Error analysis of flux limiter schemes at extrema , 2017, J. Comput. Phys..

[44]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[45]  Paul E. Dimotakis,et al.  Mixing, scalar boundedness, and numerical dissipation in large-eddy simulations , 2018, J. Comput. Phys..

[46]  H. Rouse,et al.  Cavitation and pressure distribution: head forms at zero angle of yaw , 1948 .

[47]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[48]  Ali H. Nayfeh,et al.  Computations of the Compressible Multiphase Flow Over the Cavitating High-Speed Torpedo , 2003 .

[49]  Ali H. Nayfeh,et al.  Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles , 2004 .

[50]  Dinshaw S. Balsara,et al.  An efficient class of WENO schemes with adaptive order , 2016, J. Comput. Phys..

[51]  Zhaorui Li,et al.  A high‐order finite difference method for numerical simulations of supersonic turbulent flows , 2012 .

[52]  A. Harten ENO schemes with subcell resolution , 1989 .

[53]  Shiyi Chen,et al.  A hybrid scheme for compressible magnetohydrodynamic turbulence , 2016, J. Comput. Phys..

[54]  Chi-Wang Shu Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .

[55]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[56]  Zhiwei He,et al.  An improved accurate monotonicity-preserving scheme for the Euler equations , 2016 .

[57]  Charbel Farhat,et al.  A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..

[58]  Robert Saye Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I , 2017, J. Comput. Phys..

[59]  C. Merkle,et al.  Computational modeling of the dynamics of sheet cavitation , 1998 .

[60]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[61]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[62]  Dong-Hyun Kim,et al.  A compressive interface-capturing scheme for computation of compressible multi-fluid flows , 2017 .

[63]  Nikolaus A. Adams,et al.  A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws , 2018, J. Comput. Phys..

[64]  Bing Wang,et al.  An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows , 2017, International Journal of Multiphase Flow.

[65]  Manuel Torrilhon,et al.  Compact third-order limiter functions for finite volume methods , 2009, J. Comput. Phys..

[66]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[67]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[68]  Bruno Costa,et al.  An improved WENO-Z scheme , 2016, J. Comput. Phys..

[69]  Cong-Tu Ha,et al.  Evaluation of a new scaling term in preconditioning schemes for computations of compressible cavitating and ventilated flows , 2016 .

[70]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[71]  Jack R. Edwards,et al.  An investigation of interface-sharpening schemes for multi-phase mixture flows , 2009, J. Comput. Phys..

[72]  E. Tadmor,et al.  Convenient total variation diminishing conditions for nonlinear difference schemes. Final report , 1988 .

[73]  Gordon Erlebacher,et al.  Interaction of a shock with a longitudinal vortex , 1996, Journal of Fluid Mechanics.

[74]  Ratnesh K. Shukla,et al.  Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations , 2016, J. Comput. Phys..

[75]  R. C. Swanson On Some Numerical Dissipation Schemes , 1998 .

[76]  Jacob A. McFarland,et al.  A numerical method for shock driven multiphase flow with evaporating particles , 2017, J. Comput. Phys..

[77]  Seung Hyun Kim,et al.  An improved consistent, conservative, non-oscillatory and high order finite difference scheme for variable density low Mach number turbulent flow simulation , 2018, J. Comput. Phys..

[78]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[79]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[80]  Francesco Bassi,et al.  Multicomponent gas flow computations by a discontinuous Galerkin scheme using L2-projection of perfect gas EOS , 2016, J. Comput. Phys..

[81]  Olivier Desjardins,et al.  A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows , 2013, J. Comput. Phys..

[82]  Martí Raga,et al.  New computational techniques for finite-difference Weighted Essentially Non-Oscillatory schemes and related problems , 2014 .

[83]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[84]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[85]  Farshid Nazari,et al.  High-order low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes , 2015, J. Comput. Phys..