Scott Approach Distance on Metric Spaces
暂无分享,去创建一个
Wei Li | Dexue Zhang | Wei Li | Dexue Zhang
[1] Jason Strate. Index Analysis , 2019, Expert Performance Indexing in SQL Server 2019.
[2] Ivan Lanese,et al. Dynamic Choreographies: Theory And Implementation , 2017, Log. Methods Comput. Sci..
[3] Jean Goubault-Larrecq,et al. A Few Notes on Formal Balls , 2016, Log. Methods Comput. Sci..
[4] Wei Li,et al. Sober metric approach spaces , 2016, 1607.03208.
[5] R. Lowen. Index Analysis: Approach Theory at Work , 2015 .
[6] Dirk Hofmann,et al. Monoidal topology : a categorical approach to order, metric, and topology , 2014 .
[7] Dirk Hofmann,et al. Approaching Metric Domains , 2013, Appl. Categorical Struct..
[8] Jean Goubault-Larrecq,et al. Non-Hausdorff topology and domain theory , 2013 .
[9] Dirk Hofmann,et al. A duality of quantale-enriched categories , 2010, 1012.3351.
[10] Pawel Waszkiewicz,et al. The formal ball model for -categories , 2010, Mathematical Structures in Computer Science.
[11] Dirk Hofmann,et al. DUALITY FOR DISTRIBUTIVE SPACES , 2010 .
[12] Dirk Hofmann,et al. Approximation in quantale-enriched categories , 2010, ArXiv.
[13] Dirk Hofmann,et al. Lawvere Completion and Separation Via Closure , 2007, Appl. Categorical Struct..
[14] Dirk Hofmann,et al. Injective Spaces via Adjunction , 2008, 0804.0326.
[15] Dexue Zhang,et al. Fundamental study: Complete and directed complete Ω-categories , 2007 .
[16] G. M. Kelly,et al. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.
[17] G. M. Kelly,et al. Notes on enriched categories with colimits of some class (completed version) , 2005, math/0509102.
[18] Steven Vickers,et al. Localic completion of generalized metric spaces I , 2005 .
[19] I. Stubbe,et al. CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID: CATEGORIES, DISTRIBUTORS AND FUNCTORS , 2004, math/0409473.
[20] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[21] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[22] Robert C. Flagg,et al. The essence of ideal completion in quantitative form , 2002, Theor. Comput. Sci..
[23] Hans-Peter A. Künzi,et al. On the Yoneda completion of a quasi-metric space , 2002, Theor. Comput. Sci..
[24] B. Windels. The Scott Approach Structure: An Extension of the Scott Topology for Quantitative Domain Theory , 2000 .
[25] Marcello M. Bonsangue,et al. Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..
[26] R. Lowen. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .
[27] J. J. M. M. Rutten. Weighted colimits and formal balls in generalized metric spaces , 1997 .
[28] Ralph Kopperman,et al. Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..
[29] M. B. Smyth. Completeness of Quasi‐Uniform and Syntopological Spaces , 1994 .
[30] lawa Kanas,et al. Metric Spaces , 2020, An Introduction to Functional Analysis.
[31] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[32] Pierre America,et al. Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..
[33] R. Lowen. Approach Spaces A Common Supercategory of TOP and MET , 1989 .
[34] Michael B. Smyth,et al. Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.
[35] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[36] Ionel Bucur,et al. Toposes, Algebraic Geometry and Logic , 1972 .