Scott Approach Distance on Metric Spaces

[1]  Jason Strate Index Analysis , 2019, Expert Performance Indexing in SQL Server 2019.

[2]  Ivan Lanese,et al.  Dynamic Choreographies: Theory And Implementation , 2017, Log. Methods Comput. Sci..

[3]  Jean Goubault-Larrecq,et al.  A Few Notes on Formal Balls , 2016, Log. Methods Comput. Sci..

[4]  Wei Li,et al.  Sober metric approach spaces , 2016, 1607.03208.

[5]  R. Lowen Index Analysis: Approach Theory at Work , 2015 .

[6]  Dirk Hofmann,et al.  Monoidal topology : a categorical approach to order, metric, and topology , 2014 .

[7]  Dirk Hofmann,et al.  Approaching Metric Domains , 2013, Appl. Categorical Struct..

[8]  Jean Goubault-Larrecq,et al.  Non-Hausdorff topology and domain theory , 2013 .

[9]  Dirk Hofmann,et al.  A duality of quantale-enriched categories , 2010, 1012.3351.

[10]  Pawel Waszkiewicz,et al.  The formal ball model for -categories , 2010, Mathematical Structures in Computer Science.

[11]  Dirk Hofmann,et al.  DUALITY FOR DISTRIBUTIVE SPACES , 2010 .

[12]  Dirk Hofmann,et al.  Approximation in quantale-enriched categories , 2010, ArXiv.

[13]  Dirk Hofmann,et al.  Lawvere Completion and Separation Via Closure , 2007, Appl. Categorical Struct..

[14]  Dirk Hofmann,et al.  Injective Spaces via Adjunction , 2008, 0804.0326.

[15]  Dexue Zhang,et al.  Fundamental study: Complete and directed complete Ω-categories , 2007 .

[16]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[17]  G. M. Kelly,et al.  Notes on enriched categories with colimits of some class (completed version) , 2005, math/0509102.

[18]  Steven Vickers,et al.  Localic completion of generalized metric spaces I , 2005 .

[19]  I. Stubbe,et al.  CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID: CATEGORIES, DISTRIBUTORS AND FUNCTORS , 2004, math/0409473.

[20]  Dirk Hofmann,et al.  One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..

[21]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[22]  Robert C. Flagg,et al.  The essence of ideal completion in quantitative form , 2002, Theor. Comput. Sci..

[23]  Hans-Peter A. Künzi,et al.  On the Yoneda completion of a quasi-metric space , 2002, Theor. Comput. Sci..

[24]  B. Windels The Scott Approach Structure: An Extension of the Scott Topology for Quantitative Domain Theory , 2000 .

[25]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[26]  R. Lowen Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .

[27]  J. J. M. M. Rutten Weighted colimits and formal balls in generalized metric spaces , 1997 .

[28]  Ralph Kopperman,et al.  Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..

[29]  M. B. Smyth Completeness of Quasi‐Uniform and Syntopological Spaces , 1994 .

[30]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[31]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[32]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..

[33]  R. Lowen Approach Spaces A Common Supercategory of TOP and MET , 1989 .

[34]  Michael B. Smyth,et al.  Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.

[35]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[36]  Ionel Bucur,et al.  Toposes, Algebraic Geometry and Logic , 1972 .