Development of Nanocrystalline Graphite from Lignin Sources

[1]  D. Harper,et al.  Lithium and Sodium Ion Binding Mechanisms and Diffusion Rates in Lignin-Based Hard Carbon Models , 2021, ACS omega.

[2]  T. Zawodzinski,et al.  Hierarchical Lignin-Based Carbon Matrix and Carbon Dot Composite Electrodes for High-Performance Supercapacitors , 2021, ACS omega.

[3]  O. Rios,et al.  Elucidating nano and meso-structures of lignin carbon composites: A comprehensive study of feedstock and temperature dependence , 2020 .

[4]  S. Brooks,et al.  Dissolved organic matter reduces the effectiveness of sorbents for mercury removal. , 2019, The Science of the total environment.

[5]  P. Simon,et al.  A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage , 2019, Energy Storage Materials.

[6]  W. Glasser About Making Lignin Great Again—Some Lessons From the Past , 2019, Front. Chem..

[7]  D. Clemens,et al.  Peering into the structural evolution of glass-like carbons derived from phenolic resin by combining small-angle neutron scattering with an advanced evaluation method for wide-angle X-ray scattering , 2019, Carbon.

[8]  M. Kienberger,et al.  Potential Applications of Lignin , 2019, Economics of Bioresources.

[9]  A. Lourenço,et al.  Compositional Variability of Lignin in Biomass , 2018 .

[10]  D. Wood,et al.  Processing–Structure–Property Relationships for Lignin‐Based Carbonaceous Materials Used in Energy‐Storage Applications , 2017 .

[11]  D. Harper,et al.  Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends , 2017, International journal of molecular sciences.

[12]  Troy Runge,et al.  Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization , 2017, Science Advances.

[13]  Xi Li,et al.  Lignin-Derived Thin-Walled Graphitic Carbon-Encapsulated Iron Nanoparticles: Growth, Characterization, and Applications , 2017 .

[14]  V. Maroulas,et al.  Interfacial Li-ion localization in hierarchical carbon anodes , 2017 .

[15]  D. Penumadu,et al.  Synthesis and characterization of lignin carbon fiber and composites , 2016 .

[16]  D. Harper,et al.  Role of Physicochemical Structure of Organosolv Hardwood and Herbaceous Lignins on Carbon Fiber Performance , 2016 .

[17]  O. Rios,et al.  Hierarchical Model for the Analysis of Scattering Data of Complex Materials , 2016 .

[18]  Andrew J. Senesi,et al.  Small Angle X-ray Scattering for Nanoparticle Research. , 2016, Chemical reviews.

[19]  Shifei Kang,et al.  Lignin based synthesis of carbon nanocages assembled from graphitic layers with hierarchical pore structure , 2015 .

[20]  A. Subramanian,et al.  Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin , 2015 .

[21]  M. Titirici,et al.  Structural and Morphological Changes in Kraft Lignin during Hydrothermal Carbonization , 2015 .

[22]  J. Szade,et al.  Conversion of Natural Tannin to Hydrothermal and Graphene-Like Carbons Studied by Wide-Angle X-ray Scattering. , 2015, The journal of physical chemistry. A.

[23]  W. Vermerris,et al.  Recent developments in polymers derived from industrial lignin , 2015 .

[24]  Chong Min Koo,et al.  In situ synchrotron wide-angle X-ray scattering study on rapid lithiation of graphite anode via direct contact method for Li-ion capacitors , 2015 .

[25]  Satish K. Nune,et al.  Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. , 2015, ChemSusChem.

[26]  F. Ko,et al.  X-Ray Diffraction Analysis of Kraft Lignins and Lignin-Derived Carbon Nanofibers , 2014 .

[27]  M. Misra,et al.  A Study of Carbonized Lignin as an Alternative to Carbon Black , 2014 .

[28]  J. Rouzaud,et al.  Complementary X-ray scattering and high resolution imaging of nanostructure development in thermally treated PBO fibers , 2011 .

[29]  Jill Trewhella,et al.  Small‐angle scattering for structural biology—Expanding the frontier while avoiding the pitfalls , 2010, Protein science : a publication of the Protein Society.

[30]  A. K. Tyagi,et al.  Fractal and agglomeration behavior in Gd and Sm doped CeO2 nano-crystalline powders , 2008 .

[31]  F. C. Marques,et al.  SAXS analysis of graphitic amorphous carbon , 2007 .

[32]  P. Bronsveld,et al.  Characterization of sp2- and sp3-bonded carbon in wood charcoal , 2007, Journal of Wood Science.

[33]  L. Simola,et al.  Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[34]  B. Davis,et al.  Porosity by small-angle X-ray scattering (SAXS): comparison with results from mercury penetration and nitrogen adsorption☆ , 1995 .

[35]  Stephen Y. Lin,et al.  Methods in Lignin Chemistry , 1992, Springer Series in Wood Science.

[36]  H. Damme,et al.  Surface area, mass fractal dimension, and apparent density of powders , 1988 .

[37]  G. Wilkes,et al.  Engineering plastics from lignin. VI: Structure-property relationships of PEG-containing polyurethane networks , 1985 .