Superconductors in plasmonics and metamaterials: some experimental data

High frequencies (visible and near infrared) applications of metamaterials and plasmonic structures are strongly limited by dissipative losses in structures, due to poor conductivity of most used metals in this frequency range. The use of high temperature superconductors (HTSC) is a possible approach to this problem, being HTSC plasmonic materials at nonzero temperature. Negative dielectic constant and variety of charge carriers (electrons or holes) are further very attractive features for plasmonic applications. Characterization of the high frequency response of these materials is then necessary in order to correctly understand the optical parameters of HTSC. We report on FTIR and ellipsometry measurements on NdBa2Cu3O7-δ (Nd123) and the ruthenocuprate superconductor GdSr2RuCu2O8-δ (Gd1212) in optical and near infrared regime. Among YBCO-like cuprate superconductors, Nd123 presents the highest Tc (96K), and the most interesting magnetic response properties. Even more interesting, in view of use for metamaterial, is Gd1212, whose main characteristic is the coexistence, in the same cell, of superconductivity and magnetic order below Tc: Ru ions intrinsic magnetic moments order themselves below 135K, whereas superconductivity onset is at about 40K, depending on fabrication details. We performed measurements on Melt-Textured bulk samples, which present the best superconducting properties. Results confirm the promising feature of the considered materials; further analyses, also on powders and films, are in progress.

[1]  C. E. Stronach,et al.  Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr 2 GdCu 2 O 8 studied by muon spin rotation and dc magnetization , 1999 .

[2]  Canio Noce,et al.  Coexistence of Superconductivity and Magnetism in Ruthenocuprates , 2010 .

[3]  G. Costabile,et al.  Low frequency transport measurements in , 2003 .

[4]  Ivo Rendina,et al.  An extraordinary directive radiation based on optical antimatter at near infrared. , 2010, Optics express.

[5]  Stanley T. Rolfe,et al.  A Comparison of the J -lntegral and CTOD Parameters for Short Crack Specimen Testing , 1991 .

[6]  E. Robeson,et al.  The Light of Other Days. , 1996 .

[7]  Xavier Obradors,et al.  Reactivity between Nd1+xBa2−xCu3O7−δ+x/2 and Nd4−2zBa2+2zCu2−zO10−2z phases in superconducting NdBaCuO powders and melt textured bulk samples , 2003 .

[8]  Paolo Sabatino,et al.  Preferentially directed flux motion in a very thin superconducting strip with nanostructured profile , 2012 .

[9]  R. Ciancio,et al.  Melt-textured GdSr 2RuCu 2O 8 samples: preliminary results , 2004 .

[10]  F. Murtas,et al.  Extra-drude contribution to the far infrared conductivity oxygen deficient YBCO films , 1994 .

[11]  A. Hamed Majedi,et al.  Theoretical Investigations on THz and Optical Superconductive Surface Plasmon Interface , 2009, IEEE Transactions on Applied Superconductivity.

[12]  M. Kafesaki,et al.  A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics , 2012, 1210.0640.

[13]  R. Ciancio,et al.  Morphological and structural study on GdSr/sub 2/RuCu/sub 2/O/sub 8/ melt-textured samples , 2005, IEEE Transactions on Applied Superconductivity.

[14]  Massimiliano Polichetti,et al.  Directional solidification in air of NdBaCuO bulk superconductor , 2000 .

[15]  Eugene A. Goodilin,et al.  Structural disorder and superconductivity suppression in NdBa2Cu3Oz (z ∼ 7) , 2000 .

[16]  David R. Smith,et al.  Broadband electromagnetic cloaking with smart metamaterials , 2012, Nature Communications.

[17]  Regina Ciancio,et al.  Thermal properties of GdSr2RuCu2O8−δ based mixtures in the GdSr2RuO6–CuO pseudo-binary system , 2007 .

[18]  C. Tedesco,et al.  Crystal structures, magnetic and superconducting properties of the RuSr2NdCu2Ox and RuSr2GdCu2Oy compounds , 2002 .

[19]  L. Bauernfeind,et al.  Superconductors consisting of CuO2 and RuO2 layers , 1996 .

[20]  J. L. Mac-Manus-Driscoll Materials Chemistry and Thermodynamics of REBa2Cu3O7‐x (RE: Rare Earth Metal) , 1997 .

[21]  G. Grimaldi,et al.  Impact of the Starting Powder Composition on ${\rm GdSr}_{2}{\rm RuCu}_{2}{\rm O}_{8}$ Melt-Textured Processes , 2009, IEEE Transactions on Applied Superconductivity.

[22]  Danilo Zola,et al.  Study of morphological and structural properties of multi-seeded NdBaCuO samples , 2001 .

[23]  Antonio Vecchione,et al.  Fabrication of Neodymium-Based Superconducting Bulk Materials , 2000 .

[24]  Eugene A. Goodilin,et al.  On the stability region and structure of the Nd1+xBa2−xCu3Oy solid solution , 1996 .

[25]  Sheng-Fu Horng,et al.  Terahertz responses of high-resistivity YBCO thin films , 2003 .

[26]  Sang-Im Yoo,et al.  Phase diagram in the Nd-Ba-Cu-O system , 1993 .

[27]  David R. Smith,et al.  A full-parameter unidirectional metamaterial cloak for microwaves. , 2013, Nature materials.

[28]  E. Varesi,et al.  A simple statistical phenomenological model for cation substitutions in Nd1+ x Ba2− x Cu3O7−δ+ x /2 , 2008 .

[29]  Xavier Obradors,et al.  Correlation between the formation of growth bands and Nd210 addition in Nd/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-/spl delta// bulk samples , 2003 .

[30]  Li,et al.  Orthorhombic-to-tetragonal transition in R1+xBa2-xCu3O7+ delta (R=Nd, Sm, and Eu). , 1988, Physical review. B, Condensed matter.

[31]  Shoji Tanaka,et al.  A new type of pinning center in melt grown Nd123 and Sm123 , 1994 .

[32]  J. W. Lynn,et al.  Antiferromagnetic ordering of Ru and Gd in superconducting RuSr 2 GdCu 2 O 8 , 2000 .

[33]  Nikolay I. Zheludev,et al.  Superconducting Plasmonics and Extraordinary Transmission , 2010 .

[34]  Giuseppe Coppola,et al.  Digital holographic microscopy characterization of superdirective beam by metamaterial. , 2012, Optics letters.

[35]  J. Attfield,et al.  Tuning of the ferromagnetic and superconducting transitions by tin-doping in RuSr2GdCu2O8 , 1999 .

[36]  Alberto Frache,et al.  Structure and Morphology of NdSr2RuCu2O y and GdSr2RuCu2Oz , 2002 .

[37]  T. Dahm,et al.  EFFECT OF A NORMAL-STATE PSEUDOGAP ON OPTICAL CONDUCTIVITY IN UNDERDOPED CUPRATE SUPERCONDUCTORS , 1999 .

[38]  Danilo Zola,et al.  Study of structural properties and morphology of multi-seeded NdBaCuO bars , 2002 .

[39]  Canio Noce,et al.  Low frequency transport measurements in GdSr2RuCu2O8 , 2001 .

[40]  R. Ciancio,et al.  Gd-Nd Solubility in the (Gd,Nd)-Sr-Ru-Cu-O System , 2007, IEEE Transactions on Applied Superconductivity.

[41]  Consiglia Tedesco,et al.  Effects of oxygenation processes on (Nd, Gd)-Sr2RuCu2Ox synthesis , 2003 .

[42]  J. Karger‐Kocsis,et al.  Structure and morphology , 1995 .

[43]  Xavier Obradors,et al.  Reduced twinning efficiency and tri-dimensional crack structure in melt-textured NdBa2Cu3O7−δ bulk samples fragmentation process , 2012 .

[44]  R. Ciancio,et al.  Mechanical fragility and tri-dimensional crack structure in NdBaCuO top seeded and multi-seeded melt-textured samples , 2005, IEEE Transactions on Applied Superconductivity.

[45]  E. G. Romanov,et al.  Optical studies of YBCO c - axis in plane oriented film in normal and superconductive states , 1994 .

[46]  Xavier Obradors,et al.  Top Seeding Growth and Microstucture of Large Grain Nd123/422 Superconductors , 2000 .

[47]  Canio Noce,et al.  ANALYSIS OF AC TRANSPORT MEASUREMENTS ON GDSR2RUCU2O8 , 2003 .

[48]  Ulrich Wiesner,et al.  The influence of initial composition and oxygen partial pressure on the properties of melt-textured NdBaCuO , 1996 .

[49]  Yoichi Ando,et al.  Infrared signatures of hole and spin stripes inLa2−xSrxCuO4 , 2005, cond-mat/0505094.

[50]  M. Ramesh Babu,et al.  Physical properties and characterization of RuSr2GdCu2O8 (Ru-1212) grown by top seeded melt textured technique , 2009 .

[51]  Alberto Frache,et al.  SYNTHESIS, MORPHOLOGY AND STRUCTURAL PROPERTIES OF (GD,ND)SR2RUCU2O8 SAMPLES , 2003 .

[52]  C. Bernhard,et al.  Coexisting ferromagnetism and superconductivity in hybrid rutheno-cuprate superconductors , 1999, IEEE Transactions on Applied Superconductivity.

[53]  Alberto Frache,et al.  A comparison of the processes involved in the direct synthesis of GdSr2RuCu2Ox and NdSr2RuCu2Oy perovskites. , 2004 .

[54]  Regina Ciancio,et al.  Thermal characterization of GdSr 2 RuCu 2 O y -based mixtures in the GdSr 2 RuO 6 –CuO pseudobinary system , 2007 .

[55]  Ivo Rendina,et al.  Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial , 2012, Light: Science & Applications.

[56]  A. J. Freeman,et al.  Canted ferromagnetism in RuSr 2 GdCu 2 O 8 , 2002 .

[57]  Xavier Obradors,et al.  Identification of Nd163 phase in melt-textured NdBa2Cu3O7-δ bulk samples , 2003 .

[58]  Pascal Marchet,et al.  Optical conductivity of high-Tc cuprate thin films deposited by multi-target laser ablation , 2000 .

[59]  Naomichi Sakai,et al.  Melt processing for obtaining NdBa2Cu3Oy superconductors with high Tc and large Jc , 1994 .

[60]  Joseph Orenstein,et al.  Optical Conductivity and Spatial Inhomogeneity in Cuprate Superconductors , 2007 .

[61]  Bernard D. Casse,et al.  Observation of slow-light in a metamaterials waveguide at microwave frequencies , 2011 .

[62]  Srinivas Sridhar,et al.  Slow microwave waveguide made of negative permeability metamaterials , 2009 .