Pancharatnam-Berry Phase Induced Spin-Selective Transmission in Herringbone Dielectric Metamaterials.

A dielectric metamaterial approach for achieving spin-selective transmission of electromagnetic waves is proposed. The design is based on spin-controlled constructive or destructive interference between propagating phase and Pancharatnam-Berry phase. The dielectric metamaterial, consisting of monolithic silicon herringbone structures, exhibits a broadband operation in the terahertz regime.

[1]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[2]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[3]  Philippe Lalanne,et al.  High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms , 1998 .

[4]  N I Zheludev,et al.  Asymmetric propagation of electromagnetic waves through a planar chiral structure. , 2006, Physical review letters.

[5]  N I Zheludev,et al.  Nanostructured metal film with asymmetric optical transmission. , 2008, Nano letters.

[6]  D. Mawet,et al.  Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings. , 2012, Applied optics.

[7]  A. K. Azad,et al.  Terahertz metamaterial with asymmetric transmission , 2009, 0908.2524.

[8]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[9]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[10]  Cheng Zhang,et al.  High performance bianisotropic metasurfaces: asymmetric transmission of light. , 2014, Physical review letters.

[11]  T. Akimoto,et al.  (s)1/2=1.96TeVにおけるp反p衝突で305pb‐1を持つレプトン+光子+X事象での新物理学の探索 , 2006 .

[12]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[13]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[14]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[15]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[16]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[17]  Xueqin Huang,et al.  Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. , 2011, Nature materials.

[18]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[19]  S. Burger,et al.  Gold helix photonic metamaterials: a numerical parameter study. , 2010, Optics express.

[20]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[21]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[22]  Carsten Rockstuhl,et al.  Advanced Jones calculus for the classification of periodic metamaterials , 2010, 1008.4117.

[23]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[24]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[25]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[26]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[27]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[28]  Lin Wu,et al.  Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials , 2013 .

[29]  S. Fan,et al.  Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials , 2014 .