AMPA Receptor Trafficking at Excitatory Synapses

Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.

[1]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[2]  R. Nicoll,et al.  Distinct Roles for Ionotropic and Metabotropic Glutamate Receptors in the Maturation of Excitatory Synapses , 2000, The Journal of Neuroscience.

[3]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[4]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[5]  R. Dingledine,et al.  Identification of a site in glutamate receptor subunits that controls calcium permeability , 1991, Science.

[6]  B. Voss,et al.  SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. , 1993, The Journal of biological chemistry.

[7]  P. Osten,et al.  Mutagenesis Reveals a Role for ABP/GRIP Binding to GluR2 in Synaptic Surface Accumulation of the AMPA Receptor , 2000, Neuron.

[8]  J. Zhu,et al.  Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spontaneous activity , 2000, Nature Neuroscience.

[9]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[10]  Roger A. Nicoll,et al.  Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors , 2001, Neuropharmacology.

[11]  R. Dingledine,et al.  Functional Organization of the GluR1 Glutamate Receptor Promoter* , 2001, The Journal of Biological Chemistry.

[12]  C. Mahaffey,et al.  The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit , 1998, Nature Genetics.

[13]  R. Malinow,et al.  Maturation of a Central Glutamatergic Synapse , 1996, Science.

[14]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[15]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[16]  P. Kelly,et al.  Changes in the subcellular distribution of calmodulin-kinase II during brain development. , 1985, Brain research.

[17]  A. I. Schastnyĭ [Selective induction]. , 1973, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova.

[18]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[19]  Bert Sakmann,et al.  Conditional Restoration of Hippocampal Synaptic Potentiation in GluR-A-Deficient Mice , 2001, Science.

[20]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  I. Greger,et al.  RNA Editing at Arg607 Controls AMPA Receptor Exit from the Endoplasmic Reticulum , 2002, Neuron.

[22]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[23]  T. Soderling,et al.  Identification of the Ca2+/Calmodulin-dependent Protein Kinase II Regulatory Phosphorylation Site in the α-Amino-3-hydroxyl-5-methyl4-isoxazole-propionate-type Glutamate Receptor* , 1997, The Journal of Biological Chemistry.

[24]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[25]  B. Sakmann,et al.  Structural determinants of ion flow through recombinant glutamate receptor channels , 1991, Science.

[26]  L. Vyklický,et al.  Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  R. M. Gaze,et al.  Silent synapses , 1974, Nature.

[28]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Huganir,et al.  Regulation of AMPA Receptor GluR1 Subunit Surface Expression by a 4.1N-Linked Actin Cytoskeletal Association , 2000, The Journal of Neuroscience.

[30]  J. Kaplan,et al.  Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans , 2002, Neuron.

[31]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[32]  J. Hell,et al.  SAP97 Is Associated with the α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor GluR1 Subunit* , 1998, The Journal of Biological Chemistry.

[33]  G. Lynch,et al.  Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. , 1988, Science.

[34]  E. Gouaux,et al.  Structure of a glutamate-receptor ligand-binding core in complex with kainate , 1998, Nature.

[35]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[36]  K. Keinänen,et al.  Selective Binding of Synapse-associated Protein 97 to GluR-A α-Amino-5-hydroxy-3-methyl-4-isoxazole Propionate Receptor Subunit Is Determined by a Novel Sequence Motif* , 2002, The Journal of Biological Chemistry.

[37]  Yu Zhang,et al.  Synaptic Transmission and Plasticity in the Absence of AMPA Glutamate Receptor GluR2 and GluR3 , 2003, Neuron.

[38]  R. Weinberg,et al.  Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors , 2001, Neuropharmacology.

[39]  R. Malenka,et al.  Differential roles for NSF and GRIP/ABP in AMPA receptor cycling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[41]  R. Weinberg,et al.  Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat , 1999, The Journal of comparative neurology.

[42]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[43]  J. Lisman,et al.  Inhibition of the cAMP Pathway Decreases Early Long-Term Potentiation at CA1 Hippocampal Synapses , 2000, The Journal of Neuroscience.

[44]  S. Rumpel,et al.  Silent Synapses in the Developing Rat Visual Cortex: Evidence for Postsynaptic Expression of Synaptic Plasticity , 1998, The Journal of Neuroscience.

[45]  V. Piëch,et al.  Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons , 2001, Nature Neuroscience.

[46]  J. Roder,et al.  Enhanced LTP in Mice Deficient in the AMPA Receptor GluR2 , 1996, Neuron.

[47]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[48]  R. Weinberg,et al.  Interaction between GRIP and Liprin-α/SYD2 Is Required for AMPA Receptor Targeting , 2002, Neuron.

[49]  O. Steward,et al.  Synaptic Clustering of AMPA Receptors by the Extracellular Immediate-Early Gene Product Narp , 1999, Neuron.

[50]  Roberto Malinow,et al.  AMPA receptor trafficking and long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  K. Keinänen,et al.  Oligomerization and Ligand-binding Properties of the Ectodomain of the α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunit GluRD* , 1999, The Journal of Biological Chemistry.

[52]  Neal Sweeney,et al.  Synaptic Strength Regulated by Palmitate Cycling on PSD-95 , 2002, Cell.

[53]  J. Born,et al.  Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery , 2002, Nature Neuroscience.

[54]  Michael C. Crair,et al.  Silent Synapses during Development of Thalamocortical Inputs , 1997, Neuron.

[55]  R. Nicoll,et al.  Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Gavin Rumbaugh,et al.  Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory , 2003, Cell.

[57]  R. Huganir,et al.  Phosphorylation of the AMPA Receptor Subunit GluR2 Differentially Regulates Its Interaction with PDZ Domain-Containing Proteins , 2000, The Journal of Neuroscience.

[58]  R. Nicoll,et al.  Contribution of cytoskeleton to the internalization of AMPA receptors. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[60]  Yu Tian Wang,et al.  Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD , 2002, Neuron.

[61]  R. Nicoll,et al.  Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression , 2003, The Journal of Neuroscience.

[62]  R. Weinberg,et al.  Association of AMPA Receptors with a Subset of Glutamate Receptor-Interacting Protein In Vivo , 1999, The Journal of Neuroscience.

[63]  Jane Barclay,et al.  Activity-dependent scaling of quantal amplitude inneocortical neurons , 2022 .

[64]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[65]  R. O’Brien,et al.  Differing Mechanisms for Glutamate Receptor Aggregation on Dendritic Spines and Shafts in Cultured Hippocampal Neurons , 2002, The Journal of Neuroscience.

[66]  M. Sheng,et al.  Heterogeneity in the Molecular Composition of Excitatory Postsynaptic Sites during Development of Hippocampal Neurons in Culture , 1998, The Journal of Neuroscience.

[67]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[68]  R. Petralia,et al.  Synapse-Associated Protein 97 Selectively Associates with a Subset of AMPA Receptors Early in their Biosynthetic Pathway , 2001, The Journal of Neuroscience.

[69]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[70]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[71]  R. Nicoll,et al.  Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells , 1997, Neuron.

[72]  R. Huganir,et al.  Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1 , 1999, Neuron.

[73]  L. Wang,et al.  Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. , 1994, The Journal of physiology.

[74]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[75]  E. Ziff,et al.  ABP: A Novel AMPA Receptor Binding Protein , 1999, Annals of the New York Academy of Sciences.

[76]  J. Lisman,et al.  A Labile Component of AMPA Receptor-Mediated Synaptic Transmission Is Dependent on Microtubule Motors, Actin, and N-Ethylmaleimide-Sensitive Factor , 2001, The Journal of Neuroscience.

[77]  R. Abagyan,et al.  Novel Anchorage of GluR2/3 to the Postsynaptic Density by the AMPA Receptor–Binding Protein ABP , 1998, Neuron.

[78]  J. Lichtman,et al.  Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. , 1999, Science.

[79]  Michael Hollmann,et al.  N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1 , 1994, Neuron.

[80]  J. David Sweatt,et al.  A Requirement for the Mitogen-activated Protein Kinase Cascade in Hippocampal Long Term Potentiation* , 1997, The Journal of Biological Chemistry.

[81]  C F Stevens,et al.  The tetrameric structure of a glutamate receptor channel. , 1998, Science.

[82]  M. Sheng,et al.  Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization , 2000, Nature Neuroscience.

[83]  Liu Shaojun Mechanism of glutamate receptor desensitization and neuroprotection , 2003 .

[84]  R. Nicoll,et al.  Rapid, Activation-Induced Redistribution of Ionotropic Glutamate Receptors in Cultured Hippocampal Neurons , 1999, The Journal of Neuroscience.

[85]  D. Linden,et al.  Participation of postsynaptic PKC in cerebellar long-term depression in culture. , 1991, Science.

[86]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[87]  S. Satake,et al.  Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons , 2000, Nature Neuroscience.

[88]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[89]  D. Bredt,et al.  PDZ Proteins Organize Synaptic Signaling Pathways , 1998, Cell.

[90]  R. Iyengar,et al.  Postsynaptic CAMP pathway gates early LTP in hippocampal CA1 region , 1995, Neuron.

[91]  R. Nicoll,et al.  Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins , 2003, The Journal of cell biology.

[92]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[93]  B. Sakmann,et al.  Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. , 1990, Science.

[94]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[95]  J. Hell,et al.  SAP97 concentrates at the postsynaptic density in cerebral cortex , 2000, The European journal of neuroscience.

[96]  P. Somogyi,et al.  Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus , 2000, Nature.

[97]  R. Weinberg,et al.  Interaction between Liprin-α and GIT1 Is Required for AMPA Receptor Targeting , 2003, The Journal of Neuroscience.

[98]  Michael C. Crair,et al.  A critical period for long-term potentiation at thalamocortical synapses , 1995, Nature.

[99]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[100]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[101]  R. Huganir,et al.  Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors , 2001, The Journal of Neuroscience.

[102]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[104]  Masahiko Watanabe,et al.  Impairment of Suckling Response, Trigeminal Neuronal Pattern Formation, and Hippocampal LTD in NMDA Receptor ε2 Subunit Mutant Mice , 1996, Neuron.

[105]  Mark von Zastrow,et al.  Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD , 2000, Nature Neuroscience.

[106]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[107]  M. Mayer,et al.  Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor , 1994, Neuron.

[108]  D. Bredt,et al.  Protein palmitoylation: a regulator of neuronal development and function , 2002, Nature Reviews Neuroscience.

[109]  J. Lübke,et al.  Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. , 1999, Science.

[110]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[111]  R. Nicoll,et al.  Stargazin differentially controls the trafficking of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate and kainate receptors. , 2003, Molecular pharmacology.

[112]  B. Gähwiler,et al.  NMDA receptor activation limits the number of synaptic connections during hippocampal development , 2001, Nature Neuroscience.

[113]  A. Triller,et al.  The role of receptor diffusion in the organization of the postsynaptic membrane , 2003, Nature Reviews Neuroscience.

[114]  S. Nakanishi,et al.  The protein kinase Cα binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits , 1999, Neuropharmacology.

[115]  Stuart K. Kim,et al.  LIN-10 Is a Shared Component of the Polarized Protein Localization Pathways in Neurons and Epithelia , 1998, Cell.

[116]  R. Huganir,et al.  Requirement of AMPA Receptor GluR2 Phosphorylation for Cerebellar Long-Term Depression , 2003, Science.

[117]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[118]  Fang Liu,et al.  Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons , 2003, Neuron.

[119]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[120]  M. Ehlers,et al.  Dynamics and Regulation of Clathrin Coats at Specialized Endocytic Zones of Dendrites and Spines , 2002, Neuron.

[121]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[122]  R. Huganir,et al.  GRASP-1 A Neuronal RasGEF Associated with the AMPA Receptor/GRIP Complex , 2000, Neuron.

[123]  R. O’Brien,et al.  Narp and NP1 Form Heterocomplexes that Function in Developmental and Activity-Dependent Synaptic Plasticity , 2003, Neuron.

[124]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[125]  R. Nicoll,et al.  Effects of PKA and PKC on miniature excitatory postsynaptic currents in CA1 pyramidal cells. , 1998, Journal of neurophysiology.

[126]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[127]  S. Shenolikar,et al.  Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. , 1998, Science.

[128]  R. Nicoll,et al.  Expression mechanisms underlying long-term potentiation: a postsynaptic view. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[129]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[130]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[131]  P. Camilli,et al.  Glutamate regulates actin-based motility in axonal filopodia , 2001, Nature Neuroscience.

[132]  E. Kandel,et al.  Rapid Increase in Clusters of Presynaptic Proteins at Onset of Long-Lasting Potentiation , 2001, Science.

[133]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[134]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[135]  R. Huganir,et al.  Characterization of the Glutamate Receptor-Interacting Proteins GRIP1 and GRIP2 , 1999, The Journal of Neuroscience.

[136]  S. Mikawa,et al.  Disruption of AMPA receptor GluR2 clusters following long‐term depression induction in cerebellar Purkinje neurons , 2000, The EMBO journal.

[137]  Mark F. Bear,et al.  Internalization of ionotropic glutamate receptors in response to mGluR activation , 2001, Nature Neuroscience.

[138]  R. Nicoll,et al.  Postsynaptically Silent Synapses in Single Neuron Cultures , 1998, Neuron.

[139]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[140]  R. Nicoll,et al.  Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[141]  R. Huganir,et al.  Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[142]  C. Stevens,et al.  Presynaptic mechanism for long-term potentiation in the hippocampus , 1990, Nature.

[143]  G. Collingridge,et al.  PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses , 2000, Neuron.

[144]  D. Bredt,et al.  Synaptic Targeting of the Postsynaptic Density Protein PSD-95 Mediated by Lipid and Protein Motifs , 1999, Neuron.

[145]  R. Malinow,et al.  Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal CA1 neurons. , 1997, Journal of neurophysiology.

[146]  Tony Pawson,et al.  Epidermolysis bullosa and embryonic lethality in mice lacking the multi-PDZ domain protein GRIP1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[147]  Masahiko Watanabe,et al.  Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences , 2001, Neuroscience Letters.

[148]  K. Svoboda,et al.  Experience Strengthening Transmission by Driving AMPA Receptors into Synapses , 2003, Science.

[149]  M. Kennedy,et al.  The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein , 1992, Neuron.

[150]  M. Mayer,et al.  Structural determinants of allosteric regulation in alternatively spliced AMPA receptors , 1995, Neuron.

[151]  P. Usherwood,et al.  Modeling of the pore domain of the GLUR1 channel: homology with K+ channel and binding of channel blockers. , 2002, Biophysical journal.

[152]  D. Bredt,et al.  Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α1-Syntrophin Mediated by PDZ Domains , 1996, Cell.

[153]  M. Sheng,et al.  PDZ domains and the organization of supramolecular complexes. , 2001, Annual review of neuroscience.

[154]  B. Lu,et al.  Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications , 2005, Trends in Neurosciences.

[155]  R. Nicoll,et al.  Synaptic glutamate receptor clustering in mice lacking the SH3 and GK domains of SAP97 , 2002, The European journal of neuroscience.

[156]  F. Benfenati,et al.  Regulated delivery of AMPA receptor subunits to the presynaptic membrane , 2003, The EMBO journal.

[157]  R. Malinow,et al.  Critical Postsynaptic Density 95/Disc Large/Zonula Occludens-1 Interactions by Glutamate Receptor 1 (GluR1) and GluR2 Required at Different Subcellular Sites , 2002, The Journal of Neuroscience.

[158]  P. Seeburg A-to-I Editing New and Old Sites, Functions and Speculations , 2002, Neuron.

[159]  Sebastian Pascarelle,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[160]  E. Villacres,et al.  Induction of CRE-Mediated Gene Expression by Stimuli That Generate Long-Lasting LTP in Area CA1 of the Hippocampus , 1996, Neuron.

[161]  R. Nicoll,et al.  Development of excitatory circuitry in the hippocampus. , 1998, Journal of neurophysiology.

[162]  R. Huganir,et al.  Cerebellar Long-Term Depression Requires PKC-Regulated Interactions between GluR2/3 and PDZ Domain–Containing Proteins , 2000, Neuron.

[163]  Pavel Osten,et al.  PICK1 Targets Activated Protein Kinase Cα to AMPA Receptor Clusters in Spines of Hippocampal Neurons and Reduces Surface Levels of the AMPA-Type Glutamate Receptor Subunit 2 , 2001, The Journal of Neuroscience.

[164]  P. Seeburg,et al.  Interaction of ion channels and receptors with PDZ domain proteins , 1997, Current Opinion in Neurobiology.

[165]  Raymond Dingledine,et al.  Topology profile for a glutamate receptor: Three transmembrane domains and a channel-lining reentrant membrane loop , 1995, Neuron.

[166]  Roberto Malinow,et al.  Multiple Mechanisms for the Potentiation of AMPA Receptor-Mediated Transmission by α-Ca2+/Calmodulin-Dependent Protein Kinase II , 2002, The Journal of Neuroscience.

[167]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[168]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[169]  R. Huganir,et al.  Synapse-Associated Protein-97 Isoform-Specific Regulation of Surface AMPA Receptors and Synaptic Function in Cultured Neurons , 2003, The Journal of Neuroscience.

[170]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[171]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[172]  Stuart G. Cull-Candy,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2000, Nature.

[173]  K. Keinänen,et al.  Surface Expression of GluR-D AMPA Receptor Is Dependent on an Interaction between Its C-Terminal Domain and a 4.1 Protein , 2003, The Journal of Neuroscience.

[174]  G. Collingridge,et al.  Rapid and Differential Regulation of AMPA and Kainate Receptors at Hippocampal Mossy Fibre Synapses by PICK1 and GRIP , 2003, Neuron.

[175]  B. Henry,et al.  Biochemical and morphological characterization of mycobacteriophage R1 , 1978, Journal of virology.

[176]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[177]  P. Seeburg,et al.  Mammalian ionotropic glutamate receptors , 1993, Current Opinion in Neurobiology.

[178]  H. Kettenmann,et al.  Glial cells of the oligodendrocyte lineage express proton‐activated Na+ channels , 1989, Journal of neuroscience research.

[179]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[180]  R. Huganir,et al.  PDZ Proteins Bind, Cluster, and Synaptically Colocalize with Eph Receptors and Their Ephrin Ligands , 1998, Neuron.

[181]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[182]  R. Nicoll,et al.  Dynamin-dependent endocytosis of ionotropic glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[183]  John F. Crary,et al.  Protein kinase Mζ is necessary and sufficient for LTP maintenance , 2002, Nature Neuroscience.

[184]  Alison L. Barth,et al.  A developmental switch in the signaling cascades for LTP induction , 2003, Nature Neuroscience.

[185]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[186]  R. Dingledine,et al.  Transcriptional Regulation of the GluR2 Gene: Neural-Specific Expression, Multiple Promoters, and Regulatory Elements , 1998, The Journal of Neuroscience.

[187]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[188]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[189]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[190]  F. Crépel,et al.  Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study , 1988, Brain Research.

[191]  S Matsuda,et al.  Phosphorylation of Serine‐880 in GluR2 by Protein Kinase C Prevents Its C Terminus from Binding with Glutamate Receptor‐Interacting Protein , 1999, Journal of neurochemistry.

[192]  E. Kandel,et al.  Genetic Demonstration of a Role for PKA in the Late Phase of LTP and in Hippocampus-Based Long-Term Memory , 1997, Cell.

[193]  P. Hanson,et al.  NSF ATPase and α-/β-SNAPs Disassemble the AMPA Receptor-PICK1 Complex , 2002, Neuron.

[194]  R. Huganir,et al.  Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II* , 1997, The Journal of Biological Chemistry.

[195]  M. Mayer,et al.  Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the GluR2 ligand-binding core. , 2002, Journal of molecular biology.

[196]  J. Sanes,et al.  Neurotransmitter Receptor Dynamics Studied In Vivo by Reversible Photo-Unbinding of Fluorescent Ligands , 2002, Neuron.