Stochastic Logic Implementations of Polynomials With All Positive Coefficients by Expansion Methods

This brief addresses computing polynomials with all positive coefficients whose sum is less than or equal to one using unipolar stochastic logic. The contributions of this brief are twofold. First, we present novel approaches to expanding polynomials that can be implemented using multiplexers in unipolar stochastic logic. These expansions are based on ascending-order, and Horner’s rule based on descending-order. It is shown that the Horner’s rule expansion is equivalent to OR–AND expansion. We also present another new expansion, referred as AND–OR. These expansions have not been presented in any prior work. Second, we also show that the proposed AND–OR expansion is logically equivalent to the prior double-NAND expansion. Furthermore, we show that the OR–AND circuits can be transformed into equivalent double-NOR circuits.

[1]  John P. Hayes,et al.  Survey of Stochastic Computing , 2013, TECS.

[2]  Tsuyoshi Iwagaki,et al.  Compact and Accurate Digital Filters Based on Stochastic Computing , 2019, IEEE Transactions on Emerging Topics in Computing.

[3]  Keshab K. Parhi,et al.  Lattice FIR digital filter architectures using stochastic computing , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Keshab K. Parhi,et al.  Computing Arithmetic Functions Using Stochastic Logic by Series Expansion , 2019, IEEE Transactions on Emerging Topics in Computing.

[5]  Zhongfeng Wang,et al.  Area-efficient scaling-free DFT/FFT design using stochastic computing , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[6]  Mohsen Imani,et al.  Approximate Computing Using Multiple-Access Single-Charge Associative Memory , 2018, IEEE Transactions on Emerging Topics in Computing.

[7]  Mohamad Sawan,et al.  Delayed Stochastic Decoding of LDPC Codes , 2011, IEEE Transactions on Signal Processing.

[8]  Keshab K. Parhi,et al.  VLSI digital signal processing systems , 1999 .

[9]  Keshab K. Parhi,et al.  Architectures for digital filters using stochastic computing , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[10]  Jie Han,et al.  Approximate computing: An emerging paradigm for energy-efficient design , 2013, 2013 18th IEEE European Test Symposium (ETS).

[11]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[12]  John P. Hayes,et al.  Isolation-based decorrelation of stochastic circuits , 2016, 2016 IEEE 34th International Conference on Computer Design (ICCD).

[13]  Weikang Qian,et al.  The synthesis of robust polynomial arithmetic with stochastic logic , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[14]  Keshab K. Parhi,et al.  Computing Polynomials with Positive Coefficients using Stochastic Logic by Double-NAND Expansion , 2017, ACM Great Lakes Symposium on VLSI.

[15]  Howard C. Card,et al.  Stochastic Neural Computation I: Computational Elements , 2001, IEEE Trans. Computers.