Efficacy of the frequency and damping estimation of a real-value sinusoid Part 44 in a series of tutorials on instrumentation and measurement
暂无分享,去创建一个
[1] Diego P. Ruiz,et al. Parameter estimation of exponentially damped sinusoids using a higher order correlation-based approach , 1995, IEEE Trans. Signal Process..
[2] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[3] A. Cruz Serra,et al. New Spectrum Leakage Correction Algorithm for Frequency Estimation of Power System Signals , 2009, IEEE Transactions on Instrumentation and Measurement.
[4] F. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.
[5] D. Agrez,et al. Dynamics of Frequency Estimation in the Frequency Domain , 2004, IEEE Transactions on Instrumentation and Measurement.
[6] Kai-Bor Yu,et al. Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..
[7] S. Rapuano,et al. An introduction to FFT and time domain windows , 2007, IEEE Instrumentation & Measurement Magazine.
[8] K. Duda,et al. Frequency and Damping Estimation Methods - An Overview , 2011 .
[9] Sudhakar M. Pandit,et al. Cramer-Rao lower bounds for a damped sinusoidal process , 1995, IEEE Trans. Signal Process..
[10] El-Hadi Djermoune,et al. Statistical analysis of the Kumaresan-Tufts and Matrix Pencil methods in estimating a damped sinusoid , 2004, 2004 12th European Signal Processing Conference.
[11] K. J. Ray Liu,et al. A structured low-rank matrix pencil for spectral estimation and system identification , 1998, Signal Process..
[12] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[13] L. Mcbride,et al. A technique for the identification of linear systems , 1965 .
[14] Elias Aboutanios,et al. Estimating the parameters of sinusoids and decaying sinusoids in noise , 2011, IEEE Instrumentation & Measurement Magazine.
[15] T. Henderson,et al. Geometric methods for determining system poles from transient response , 1981 .
[16] K. Duda. Interpolation Algorithms of DFT for Parameters Estimation of Sinusoidal and Damped Sinusoidal Signals , 2012 .
[17] D. Petri,et al. Analysis of dampled sinusoidal signals via a frequency domain interpolation algorithm , 1993 .
[18] Debasis Kundu,et al. Estimating parameters in the damped exponential model , 2001, Signal Process..
[19] T. Moon,et al. Mathematical Methods and Algorithms for Signal Processing , 1999 .
[20] Simon Haykin,et al. Adaptive radar detection and estimation , 1992 .
[21] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[22] Alan V. Oppenheim,et al. Discrete-time signal processing (2nd ed.) , 1999 .
[23] Petre Stoica. List of references on spectral line analysis , 1993, Signal Process..
[24] Rik Pintelon,et al. System Identification: A Frequency Domain Approach , 2012 .
[25] Tomasz P. Zielinski,et al. DFT-based Estimation of Damped Oscillation Parameters in Low-Frequency Mechanical Spectroscopy , 2011, IEEE Transactions on Instrumentation and Measurement.
[26] Geoffrey Ye Li,et al. A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation , 1997, IEEE Trans. Signal Process..
[27] Petre Stoica,et al. Introduction to spectral analysis , 1997 .
[28] Bernard Mulgrew,et al. Iterative frequency estimation by interpolation on Fourier coefficients , 2005, IEEE Transactions on Signal Processing.
[29] Barry G. Quinn,et al. The Estimation and Tracking of Frequency , 2001 .
[30] Debasis Kundu,et al. Estimating the parameters of exponentially damped/undamped sinusoids in noise: A non-iterative approach , 1995, Signal Process..
[31] S. Fattah,et al. Identification of noisy AR systems using damped sinusoidal model of autocorrelation function , 2003, IEEE Signal Processing Letters.
[32] Elias Aboutanios,et al. Estimation of the Frequency and Decay Factor of a Decaying Exponential in Noise , 2010, IEEE Transactions on Signal Processing.
[33] James H. McClellan,et al. Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..
[34] Xu Peiliang,et al. Overview of Total Least Squares Methods , 2013 .
[35] Krzysztof Duda,et al. DFT Interpolation Algorithm for Kaiser–Bessel and Dolph–Chebyshev Windows , 2011, IEEE Transactions on Instrumentation and Measurement.
[36] T. Sarkar,et al. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .
[37] Steven Kay,et al. Modern Spectral Estimation: Theory and Application , 1988 .
[38] Rong-Ching Wu,et al. Analysis of the Exponential Signal by the Interpolated DFT Algorithm , 2010, IEEE Transactions on Instrumentation and Measurement.