The degeneration formula for stable log maps

We give a direct proof for the degeneration formula of Gromov–Witten invariants including its cycle version for degenerations with smooth singular locus in the setting of stable log maps of Abramovich-Chen, Chen, Gross–Siebert.

[1]  Travis Mandel,et al.  Descendant log Gromov-Witten invariants for toric varieties and tropical curves , 2016, Transactions of the American Mathematical Society.

[2]  Qile Chen Stable logarithmic maps to Deligne-Faltings pairs I , 2010, 1008.3090.

[3]  Martin Olsson The logarithmic cotangent complex , 2005 .

[4]  Michel van Garrel,et al.  Local Gromov-Witten invariants are log invariants , 2017, Advances in Mathematics.

[5]  Tim Graefnitz Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs , 2020, Journal of Algebraic Geometry.

[6]  Jun Li,et al.  Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties , 1996 .

[7]  Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products , 2003, math/0303387.

[8]  D. Abramovich,et al.  Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations , 2012, 1207.2085.

[9]  Qile Chen The degeneration formula for logarithmic expanded degenerations , 2010, 1009.4378.

[10]  S. Mochizuki The Geometry of the Compactification of the Hurwitz Scheme , 1995 .

[11]  M. Gross,et al.  Logarithmic Gromov-Witten invariants , 2011, 1102.4322.

[12]  Thomas H. Parker,et al.  The symplectic sum formula for Gromov–Witten invariants , 2000, 1510.06943.

[13]  D. Abramovich,et al.  Orbifold thechniques in degeneration formulas , 2016 .

[14]  C. Manolache A G ] 1 4 M ay 2 00 8 Virtual pullbacks , 2008 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Martin Olsson,et al.  Twisted stable maps to tame Artin stacks , 2008, 0801.3040.

[17]  Fumiharu Kato LOG SMOOTH DEFORMATION AND MODULI OF LOG SMOOTH CURVES , 2000 .

[18]  Martin Olsson LOGARITHMIC GEOMETRY AND ALGEBRAIC STACKS , 2003 .

[19]  Travis Mandel,et al.  Tropical quantum field theory, mirror polyvector fields, and multiplicities of tropical curves , 2019, 1902.07183.

[20]  B. Fantechi,et al.  The intrinsic normal cone , 1996, alg-geom/9601010.

[21]  H. O. Erdin Characteristic Classes , 2004 .

[22]  Brett Parker Gromov Witten invariants of exploded manifolds , 2011, 1102.0158.

[23]  D. Abramovich,et al.  LOGARITHMIC STABLE MAPS TO DELIGNE – FALTINGS PAIRS II , 2010 .

[24]  Pierrick Bousseau Tropical refined curve counting from higher genera and lambda classes , 2017, Inventiones mathematicae.

[25]  A. Kresch Cycle groups for Artin stacks , 1998, math/9810166.

[26]  D. Abramovich,et al.  Orbifold techniques in degeneration formulas , 2011, 1103.5132.

[27]  Bernd Siebert,et al.  Toric degenerations of toric varieties and tropical curves , 2004 .

[28]  A Degeneration Formula of GW-Invariants , 2001, math/0110113.

[29]  Simon Felten,et al.  Smoothing toroidal crossing spaces , 2019, Forum of Mathematics, Pi.

[30]  Pierrick Bousseau The quantum tropical vertex , 2018, Geometry & Topology.

[31]  M. Gross,et al.  Decomposition of degenerate Gromov–Witten invariants , 2017, Compositio Mathematica.

[32]  Jonathan Wise,et al.  Costello’s pushforward formula: errata and generalization , 2021, manuscripta mathematica.

[33]  Bumsig Kim Logarithmic Stable Maps , 2008, 0807.3611.

[34]  An-Min Li,et al.  Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds , 1998, math/9803036.

[35]  Dhruv Ranganathan Logarithmic Gromov–Witten theory with expansions , 2019, Algebraic Geometry.

[36]  Qile Chen Logarithmic stable maps to Deligne-Faltings pairs , 2011 .

[37]  An-Min Li,et al.  Relative orbifold Gromov-Witten theory and degeneration formula , 2011, 1110.6803.