Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures
暂无分享,去创建一个
John E. Bowers | William E. McMahon | Daniel J. Friedman | Emmett E. Perl | J. Bowers | D. Friedman | Chieh-Ting Lin | W. McMahon | E. Perl | Chieh-Ting Lin
[1] Peichen Yu,et al. Towards high‐efficiency multi‐junction solar cells with biologically inspired nanosurfaces , 2014 .
[2] Gyeong Cheol Park,et al. Size-dependent optical behavior of disordered nanostructures on glass substrates. , 2012, Applied optics.
[3] Yangsen Kang,et al. Design and fabrication of nano-pyramid GaAs solar cell , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).
[4] Zongfu Yu,et al. Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.
[5] P. Yu,et al. Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.
[6] V. Polojärvi,et al. Moth‐eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell , 2012 .
[7] Daniel J. Friedman,et al. High‐Efficiency III‐V Multijunction Solar Cells , 2011 .
[8] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[9] M. Hutley,et al. The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .
[10] V. Polojärvi,et al. Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography , 2010 .
[11] Design of ultra-broadband antireflection coatings utilizing integrated moth-eye structures for multi-junction device applications , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).
[12] S. Boden,et al. Suppression of backscattered diffraction from sub-wavelength 'moth-eye' arrays. , 2013, Optics express.
[13] D. C. Law,et al. Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .
[14] Yangsen Kang,et al. High-efficiency nanostructured window GaAs solar cells. , 2013, Nano letters.
[15] Wilhelm Warta,et al. Solar cell efficiency tables (version 42) , 2013 .
[16] Douglas S. Hobbs,et al. Update on the development of high performance anti-reflecting surface relief micro-structures , 2007, SPIE Defense + Commercial Sensing.
[17] H. Macleod,et al. Thin-Film Optical Filters , 1969 .
[18] Young Min Song,et al. Design of highly transparent glasses with broadband antireflective subwavelength structures. , 2010, Optics express.
[19] D. Aiken,et al. High performance anti-reflection coatings for broadband multi-junction solar cells , 2000 .
[20] V. Polojärvi,et al. Moth-Eye Antireflection Coatings Fabricated by Nanoimprint Lithography on Dilute Nitride Solar Cell , 2011 .
[21] Martin A. Green,et al. Solar cell efficiency tables (version 41) , 2013 .
[22] D. Stavenga,et al. Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.
[23] D. C. Law,et al. Direct Semiconductor Bonded 5J Cell for Space and Terrestrial Applications , 2014, IEEE Journal of Photovoltaics.
[24] Harry A. Atwater,et al. Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems , 2010 .