Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures

Ultrabroadband and wide-angle antireflection coatings (ARCs) are essential to realizing efficiency gains for state-of-the-art multijunction photovoltaic devices. In this study, we examine a novel design that integrates a nanostructured antireflection layer with a multilayer ARC. Using optical models, we find that this hybrid approach can reduce reflected AM1.5D power by 10-50 W/m2 over a wide angular range compared to conventional thin-film ARCs. A detailed balance model correlates this to an improvement in absolute cell efficiency of 1-2%. Three different ARC designs are fabricated on indium gallium phosphide, and reflectance is measured to show the benefit of this hybrid approach.

[1]  Peichen Yu,et al.  Towards high‐efficiency multi‐junction solar cells with biologically inspired nanosurfaces , 2014 .

[2]  Gyeong Cheol Park,et al.  Size-dependent optical behavior of disordered nanostructures on glass substrates. , 2012, Applied optics.

[3]  Yangsen Kang,et al.  Design and fabrication of nano-pyramid GaAs solar cell , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[4]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[5]  P. Yu,et al.  Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[6]  V. Polojärvi,et al.  Moth‐eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell , 2012 .

[7]  Daniel J. Friedman,et al.  High‐Efficiency III‐V Multijunction Solar Cells , 2011 .

[8]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[9]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[10]  V. Polojärvi,et al.  Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography , 2010 .

[11]  Design of ultra-broadband antireflection coatings utilizing integrated moth-eye structures for multi-junction device applications , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[12]  S. Boden,et al.  Suppression of backscattered diffraction from sub-wavelength 'moth-eye' arrays. , 2013, Optics express.

[13]  D. C. Law,et al.  Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .

[14]  Yangsen Kang,et al.  High-efficiency nanostructured window GaAs solar cells. , 2013, Nano letters.

[15]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[16]  Douglas S. Hobbs,et al.  Update on the development of high performance anti-reflecting surface relief micro-structures , 2007, SPIE Defense + Commercial Sensing.

[17]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[18]  Young Min Song,et al.  Design of highly transparent glasses with broadband antireflective subwavelength structures. , 2010, Optics express.

[19]  D. Aiken,et al.  High performance anti-reflection coatings for broadband multi-junction solar cells , 2000 .

[20]  V. Polojärvi,et al.  Moth-Eye Antireflection Coatings Fabricated by Nanoimprint Lithography on Dilute Nitride Solar Cell , 2011 .

[21]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[22]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[23]  D. C. Law,et al.  Direct Semiconductor Bonded 5J Cell for Space and Terrestrial Applications , 2014, IEEE Journal of Photovoltaics.

[24]  Harry A. Atwater,et al.  Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems , 2010 .