Robust control analysis and synthesis for LPV systems under affine uncertainty structure

The paper deals with a class of linear continuous systems, containing time-varying parameters that have an affine structure. The objective is to establish robust stability and stabilizabilty conditions, allowing separation between the dynamic and the Lyapunov matrices. Moreover, it is shown that the developed approach brings a larger degree of freedom, than existing ones, due to an added real variable.

[1]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[2]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[3]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[4]  Uri Shaked,et al.  Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty , 2001, IEEE Trans. Autom. Control..

[5]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[6]  S. Dasgupta,et al.  Parametric Lyapunov functions for uncertain systems: the multiplier approach , 1999 .

[7]  Pierre Apkarian,et al.  Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations , 2001, IEEE Trans. Autom. Control..

[8]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[9]  Zongli Lin,et al.  A descriptor system approach to robust stability analysis and controller synthesis , 2004, IEEE Trans. Autom. Control..

[10]  Tomomichi Hagiwara,et al.  New dilated LMI characterizations for continuous-time multiobjective controller synthesis , 2004, Autom..

[11]  J. Geromel,et al.  Parameter-dependent Lyapunov functions for time varying polytopic systems , 2005, Proceedings of the 2005, American Control Conference, 2005..