Ideal gas provides q-entropy

A mathematical procedure is suggested to obtain deformed entropy formulas of type K(SK)=∑PiK(−lnPi), by requiring zero mutual K(SK)-information between a finite subsystem and a finite reservoir. The use of this method is first demonstrated on the ideal gas equation of state with finite constant heat capacity, C, where it delivers the Renyi and Tsallis formulas. A novel interpretation of the q∗=2−q duality arises from the comparison of canonical subsystem and total microcanonical partition approaches. In the sequel a new, generalized deformed entropy formula is constructed for the linear C(S)=C0+C1S relation.

[1]  V. V. Begun,et al.  Particle number fluctuations in a canonical ensemble , 2004 .

[2]  T. Biró,et al.  EPJ manuscript No. (will be inserted by the editor) Non-Extensive Approach to Quark Matter , 2022 .

[3]  Jose S. Andrade,et al.  Tsallis thermostatistics for finite systems: a Hamiltonian approach , 2003 .

[4]  M. P. Almeida Generalized entropies from first principles , 2001 .

[5]  Peter Hänggi,et al.  Finite bath fluctuation theorem. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  G. Wilk,et al.  Equivalence of volume and temperature fluctuations in power-law ensembles , 2010, 1006.3657.

[7]  A. Białas,et al.  Renyi entropies of a black hole , 2008 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  C. Tsallis Nonextensive statistics: theoretical, experimental and computational evidences and connections , 1999, cond-mat/9903356.

[10]  G. Wilk,et al.  Multiplicity fluctuations in high energy hadronic and nuclear collisions , 2004 .

[11]  G. Wilk,et al.  On the possibility of q-scaling in high energy production processes , 2012, 1203.6787.

[12]  T. Biró,et al.  Transverse hadron spectra from a stringy quark matter , 2009 .

[13]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[14]  J. Cleymans,et al.  The Tsallis distribution in proton?proton collisions at $\sqrt{s}$ = 0.9 TeV at the LHC , 2011, 1110.5526.

[15]  P. Jizba,et al.  Observability of Rényi's entropy. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  G. Wilk,et al.  Consequences of temperature fluctuations in observables measured in high-energy collisions , 2012, 1203.4452.

[17]  Péter Ván,et al.  Nonadditive thermostatistics and thermodynamics , 2012, 1209.5963.

[18]  V. V. Begun,et al.  Power law in a microcanonical ensemble with scaling volume fluctuations , 2008 .

[19]  R. Bellwied,et al.  Statistical hadronization phenomenology in K/π fluctuations at ultra-relativistic energies , 2009, 1001.0087.

[20]  Constantino Tsallis,et al.  Introduction to Nonextensive Statistical Mechanics and Thermodynamics , 2003 .

[21]  A non-extensive equilibrium analysis of π+ pT spectra at RHIC , 2010, 1001.3136.

[22]  Jan Naudts Generalised thermostatistics using hyperensembles , 2007 .

[23]  T. S. Biro,et al.  Generalised Tsallis Statistics in Electron-Positron Collisions , 2011, 1101.3023.

[24]  T. S. Biro,et al.  Abstract composition rule for relativistic kinetic energy in the thermodynamical limit , 2008, 0809.4675.

[25]  J. Cleymans,et al.  Near-thermal equilibrium with Tsallis distributions in heavy ion collisions , 2008, 0812.1471.

[26]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[27]  T. Biró,et al.  Transverse hadron spectra from a stringy quark matter , 2008, 0812.2985.

[28]  T. Biró Is There a Temperature , 2011 .

[29]  V. V. Begun,et al.  Particle number fluctuations in relativistic Bose and Fermi gases , 2006 .

[30]  G. Wilk,et al.  Power laws in elementary and heavy-ion collisions , 2008, 0810.2939.

[31]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[32]  Mehran Kardar,et al.  Statistical physics of particles , 2007 .