Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

Jane E. Carpenter | A. Whittemore | W. Chung | S. Cross | M. Beckmann | P. Fasching | R. Nussbaum | D. Steinemann | N. Rahman | C. Vachon | K. Czene | P. Hall | K. Humphreys | J. Olson | F. Couch | H. Brenner | J. Chang-Claude | S. Chanock | M. García-Closas | B. Bonanni | R. Hoover | D. Hunter | O. Olopade | B. Karlan | J. Benítez | Sofia Khan | G. Giles | J. Hopper | B. Henderson | C. Haiman | E. John | W. Foulkes | M. Southey | L. Marchand | A. Cox | D. Easton | P. Kraft | R. Tamimi | G. Rennert | R. Scott | A. Hollestelle | J. Martens | P. Miron | A. Richardson | P. Pharoah | D. Lambrechts | J. Peto | M. Greene | K. Offit | A. Antoniou | L. Le Marchand | Zhaoming Wang | S. Buys | F. Schumacher | E. Weiderpass | H. Brauch | V. Kristensen | J. Long | W. Zheng | H. Anton-Culver | P. Guénel | R. Barkardottir | A. Dunning | Deborah J. Thompson | D. Eccles | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | H. Nevanlinna | Jianjun Liu | N. Bogdanova | R. Tollenaar | P. Devilee | R. Milne | A. González-Neira | U. Hamann | Y. Ko | A. Mannermaa | V. Kosma | C. Lázaro | K. Nathanson | J. Cunningham | P. Peeters | J. Garber | M. Kibriya | H. Ahsan | C. Isaacs | A. Lindblom | K. Michailidou | M. Ghoussaini | M. Schmidt | M. Bolla | C. Turnbull | T. Muranen | K. Aittomäki | C. Blomqvist | A. Meindl | R. Schmutzler | E. Makalic | D. Schmidt | A. Rudolph | D. Flesch‐Janys | T. Heikkinen | T. Truong | F. Marmé | B. Burwinkel | M. P. Zamora | E. Sawyer | I. Tomlinson | I. Andrulis | J. Knight | G. Glendon | A. Mulligan | S. Margolin | M. Hooning | H. Tsimiklis | L. Haeberle | A. Ekici | V. Arndt | A. Swerdlow | J. Figueroa | M. Goldberg | M. Dumont | R. Winqvist | K. Pylkäs | P. Radice | P. Peterlongo | S. Manoukian | A. Jakubowska | J. Lubiński | S. Slager | A. Toland | F. Fostira | S. Teo | J. Simard | H. Darabi | H. Wildiers | S. Nord | S. Lindstrom | S. Neuhausen | A. Försti | S. Wang-gohrke | M. Robson | W. Tapper | D. Yannoukakos | S. Yao | A. Monteiro | S. Gayther | L. McGuffog | A. Godwin | F. Canzian | E. Friedman | S. Gapstur | N. Tung | C. V. van Deurzen | E. Imyanitov | P. Ganz | A. Osorio | K. Khaw | I. Romieu | M. Gunter | S. Domchek | D. Stoppa-Lyonnet | Sue-Kyung Park | R. Tumino | N. Lindor | D. Frost | O. Sinilnikova | S. Mazoyer | F. Hogervorst | C. Singer | C. Szabo | K. Claes | J. Rantala | B. Arun | U. Jensen | S. Hart | F. Damiola | M. Stenmark-Askmalm | O. Díez | C. Ambrosone | Austin Miller | B. Poppe | K. Malone | R. Santella | A. Gerdes | M. Kabisch | P. James | S. Blank | B. Arver | M. Daly | D. Goldgar | S. Gayther | K. Kuchenbaecker | L. Senter | M. Thomassen | R. Pilarski | J. Lester | M. Teixeira | J. Weitzel | M. Gammon | M. Terry | B. Peissel | E. Rutgers | C. Phelan | T. Huzarski | J. Gronwald | M. Gabrielson | M. Gaudet | E. Oláh | C. Olswold | P. Soucy | D. Barrowdale | S. Healey | T. V. Hansen | M. Montagna | T. Caldés | E. J. van Rensburg | M. Caligo | R. Janavicius | A. Kwong | S. Ellis | R. Varon‐Mateeva | C. Rappaport | Y. Laitman | Y. Ding | Á. Teulé | P. Mai | J. Herzog | S. Agata | M. de la Hoya | C. M. Dorfling | L. Tihomirova | T. Friebel | L. Beckmann | M. Barile | Eunjung Lee | Xiaohong R. Yang | M. Hoya | S. Kar | P. Sharma | I. Konstantopoulou | G. Mendoza-Fandino | M. Sanchez | R. Dolcetti | H. Ehrencrona | G. Ursin | H. Eliassen | Michael E. Jones | E. V. Rensburg | D. J. Hunter | Emily J. Hallberg | M. Sánchez | C. V. Deurzen | E. Hallberg | I. dos-Santos-Silva | Priyanka Sharma | Janna Lilyquist | A. Teule | D. Thompson | A. Monteiro | Thérèse Truong | P. Hall | Hatef Darabi | Steve Ellis | T. Hansen | A. Richardson | R. Scott | Silje Nord | E. Friedman | B. Henderson | D. Flesch-Janys | Thérèse Truong | M. Teixeira | Gustavo A. Mendoza-Fandino | Curtis L. Olswold | Riccardo Dolcetti | R. Scott | Andrea L. Richardson | Johanna Rantala | D. J. Hunter | M. Sánchez

[1]  [The Institute for Quality and Efficiency in Health Care - IQWiG]. , 2018, Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)).

[2]  Manal M. Hassan,et al.  Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer , 2015, Nature Genetics.

[3]  Raffaele Pezzilli,et al.  Common variation at 2 p 13 . 3 , 3 q 29 , 7 p 13 and 17 q 25 . 1 associated with susceptibility to pancreatic cancer , 2022 .

[4]  Patrick Neven,et al.  Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer , 2015 .

[5]  S. Cross,et al.  Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk , 2022 .

[6]  R. Nussbaum,et al.  Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers , 2014, Breast Cancer Research.

[7]  Yusuke Nakamura,et al.  Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer , 2014, Nature Genetics.

[8]  Jane E. Carpenter,et al.  Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. , 2014, Carcinogenesis.

[9]  A. Børresen-Dale,et al.  The 5p12 breast cancer susceptibility locus affects MRPS30 expression in estrogen‐receptor positive tumors , 2014, Molecular oncology.

[10]  Jianxin Shi,et al.  A Genome-wide Association Study of Early-Onset Breast Cancer Identifies PFKM as a Novel Breast Cancer Gene and Supports a Common Genetic Spectrum for Breast Cancer at Any Age , 2014, Cancer Epidemiology, Biomarkers & Prevention.

[11]  Jaana M. Hartikainen,et al.  Identification and characterization of novel associations in the CASP 8 / ALS 2 CR 12 region on chromosome 2 with breast cancer risk , 2014 .

[12]  Simon G Coetzee,et al.  Nucleosome positioning and histone modifications define relationships between regulatory elements and nearby gene expression in breast epithelial cells , 2014, BMC Genomics.

[13]  J. Chang-Claude,et al.  A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk , 2013, Human molecular genetics.

[14]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[15]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[16]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[17]  Patrick Neven,et al.  Genome-wide association studies identify four ER negative–specific breast cancer risk loci , 2013, Nature Genetics.

[18]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[19]  B. Carter Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) , 2013 .

[20]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[21]  Jane E. Carpenter,et al.  A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. , 2012, Human molecular genetics.

[22]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[23]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[24]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[25]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[26]  Daniel J. Park,et al.  19p13.1 is a triple-negative-specific breast cancer susceptibility locus. , 2012, Cancer research.

[27]  Michael Jones,et al.  Genome-wide association analysis identifies three new breast cancer susceptibility loci , 2012, Nature Genetics.

[28]  Mads Thomassen,et al.  Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers , 2012, Breast Cancer Research.

[29]  Jane E. Carpenter,et al.  A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer , 2011, Nature Genetics.

[30]  C. Perou,et al.  Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features , 2011, BMC Medical Genomics.

[31]  Michael Jones,et al.  Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. , 2011, Journal of the National Cancer Institute.

[32]  Christiana Kartsonaki,et al.  A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population , 2010, Nature Genetics.

[33]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[34]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[35]  M. Gerstein,et al.  Variation in Transcription Factor Binding Among Humans , 2010, Science.

[36]  Wei Zheng,et al.  A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33 , 2010, Nature Genetics.

[37]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[38]  M. Thun,et al.  Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.

[39]  W. Willett,et al.  A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.

[40]  J. Haines,et al.  Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.

[41]  A. Sigurdsson,et al.  Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer , 2008, Nature Genetics.

[42]  R. Collins,et al.  Newly identified loci that influence lipid concentrations and risk of coronary artery disease , 2008, Nature Genetics.

[43]  D. Gudbjartsson,et al.  Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.

[44]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[45]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[46]  Yurii S. Aulchenko,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .

[47]  Georgia Chenevix-Trench,et al.  An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) , 2007, Breast Cancer Research.

[48]  Farin Kamangar,et al.  Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  Julian Peto,et al.  Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype , 2005, Clinical Cancer Research.

[50]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[51]  H. Frierson,et al.  Defining a common region of deletion at 13q21 in human cancers , 2001, Genes, chromosomes & cancer.

[52]  E. Gillanders,et al.  Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Stratton,et al.  Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. , 1998, Journal of the National Cancer Institute.

[54]  M. Slattery,et al.  A comprehensive evaluation of family history and breast cancer risk. The Utah Population Database. , 1993, JAMA.