Demonstration of electron-nuclear decoupling at a spin clock transition

[1]  Aman Ullah,et al.  Electrical two-qubit gates within a pair of clock-qubit magnetic molecules , 2022, npj Quantum Information.

[2]  J. Ziller,et al.  A 9.2-GHz clock transition in a Lu(II) molecular spin qubit arising from a 3,467-MHz hyperfine interaction , 2022, Nature Chemistry.

[3]  N. Chilton,et al.  Analysis of vibronic coupling in a 4f molecular magnet with FIRMS , 2021, Nature Communications.

[4]  D. Awschalom,et al.  Probing the Coherence of Solid-State Qubits at Avoided Crossings , 2020, 2010.11077.

[5]  P. Hemmer Multiplicative suppression of decoherence , 2020, Science.

[6]  P. Bertet,et al.  Donor Spins in Silicon for Quantum Technologies , 2020, Advanced Quantum Technologies.

[7]  E. Coronado,et al.  Exploiting clock transitions for the chemical design of resilient molecular spin qubits† , 2020, Chemical science.

[8]  T. Ohshima,et al.  Universal coherence protection in a solid-state spin qubit , 2020, Science.

[9]  E. Coronado,et al.  Quantum coherent spin–electric control in a molecular nanomagnet at clock transitions , 2020, Nature Physics.

[10]  D. Awschalom,et al.  Optically addressable molecular spins for quantum information processing , 2020, Science.

[11]  S. Stoll,et al.  Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals. , 2020, The journal of physical chemistry letters.

[12]  P. Santini,et al.  Constructing clock-transition-based two-qubit gates from dimers of molecular nanomagnets , 2020, 2004.03635.

[13]  P. Bertet,et al.  Hyperfine spectroscopy in a quantum-limited spectrometer , 2020, Magnetic resonance.

[14]  J. Stanton,et al.  Decoherence in Molecular Electron Spin Qubits: Insights from Quantum Many-Body Simulations. , 2019, The journal of physical chemistry letters.

[15]  E. Coronado,et al.  Decoherence from dipolar interspin interactions in molecular spin qubits , 2019, Physical Review B.

[16]  Joseph M. Zadrozny,et al.  Nuclear-spin-pattern control of electron-spin dynamics in a series of V(iv) complexes† †Electronic supplementary information (ESI) available: Methods, additional characterization and discussion. CCDC 1921675–1921677. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.103 , 2019, Chemical science.

[17]  R. Sessoli,et al.  The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. , 2019, Journal of the American Chemical Society.

[18]  E. Coronado,et al.  Molecular spins for quantum computation , 2019, Nature Chemistry.

[19]  R. Winpenny,et al.  A Clock Transition in the Cr7Mn Molecular Nanomagnet , 2019, Magnetochemistry.

[20]  U. Andersen,et al.  Clock transition by continuous dynamical decoupling of a three-level system , 2018, Scientific Reports.

[21]  A Ferhat,et al.  Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm. , 2017, Physical review letters.

[22]  E. Laird,et al.  Spin Resonance Clock Transition of the Endohedral Fullerene ^{15}N@C_{60}. , 2017, Physical review letters.

[23]  Joseph M. Zadrozny,et al.  A Porous Array of Clock Qubits. , 2017, Journal of the American Chemical Society.

[24]  M. Wasielewski,et al.  Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence. , 2017, Journal of the American Chemical Society.

[25]  A. Soncini,et al.  Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study. , 2017, Inorganic chemistry.

[26]  Joseph M. Zadrozny,et al.  Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. , 2016, Journal of the American Chemical Society.

[27]  E. Coronado,et al.  Enhancing coherence in molecular spin qubits via atomic clock transitions , 2016, Nature.

[28]  Joseph M. Zadrozny,et al.  Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit , 2015, ACS central science.

[29]  H. Riemann,et al.  Atomic clock transitions in silicon-based spin qubits. , 2013, Nature nanotechnology.

[30]  E. Coronado,et al.  Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [Ho(III)(W5O18)2]9-. , 2012, Dalton transactions.

[31]  E. Coronado,et al.  Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates [Ln(W5O18)2]19- and [Ln(β2-SiW11O39)2] 13- (LnIII: Tb, Dy, Ho, Er, Tm, and Yb). , 2009 .

[32]  E. Coronado,et al.  Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9- and [Ln(beta2-SiW11O39)2]13- (Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb). , 2009, Inorganic chemistry.

[33]  P. Stamp,et al.  Theory of the spin bath , 2000, cond-mat/0001080.

[34]  Wineland,et al.  Laser-cooled-atomic frequency standard. , 1985, Physical review letters.

[35]  A. Pines,et al.  Operator formalism for double quantum NMR , 1977 .

[36]  J. Morton,et al.  Pulse Techniques for Quantum Information Processing , 2016 .

[37]  E. Hahn,et al.  Spin Echoes , 2011 .

[38]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .