Population genetics strategies to characterize long-distance dispersal of insects

Abstract Population genetics strategies offer an alternative and powerful approach for obtaining information about long-distance movement, and have been widely used for examining patterns and magnitude of insect dispersal over geographic and temporal scales. Such strategies are based on the principle that genetic divergence between local populations reflects the interplay between genetic drift and gene flow, and thus can function as an indicator of dispersal capacity. Relatively new approaches for inferring population history are widely applicable for documenting introduction routes of invasive or quarantine species. These approaches are based on genetic variability calculated from changes in gene frequency of subpopulations, measured using molecular genetic markers. Inferences from population genetics can supplement and corroborate conventional observational approaches for characterizing insect dispersal and have provided important clues to many questions raised in the field of behavior and ecology of insects. Here, we summarize our work on the boll weevil as a case study to illustrate the kinds of information on dispersal capacity and dispersal patterns that can be obtained from population genetics techniques that would be difficult or impossible to acquire in other ways. Then we provide examples of how the molecular markers and population genetics tools have been applied to answer immediate questions of relevance to eradication program managers. Though the latter are idiosyncratic to this particular pest, they demonstrate the kinds and range of problems that can be addressed in other systems through application of population genetics strategies.

[1]  Smith Ce,et al.  Boll weevil found in pre-columbian cotton from Mexico. , 1968 .

[2]  G. Hewitt,et al.  Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects , 2003, Molecular ecology.

[3]  R. Nagoshi,et al.  Texas is the Overwintering Source of Fall Armyworm in Central Pennsylvania: Implications for Migration Into the Northeastern United States , 2009, Environmental entomology.

[4]  Emese Meglécz,et al.  QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects , 2010, Bioinform..

[5]  G. Evatt,et al.  EST-SSRs as a resource for population genetic analyses , 2007, Heredity.

[6]  H. Dingle,et al.  What Is Migration? , 2007 .

[7]  V. Drake,et al.  The Influence of Atmospheric Structure and Motions on Insect Migration , 1988 .

[8]  P. Fuerst,et al.  An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. , 1983, Genetics.

[9]  K. Kim,et al.  Microsatellite data analysis for population genetics. , 2013, Methods in molecular biology.

[10]  J. Cañizares,et al.  Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae) , 2011, BMC Genomics.

[11]  M. Bonizzoni,et al.  Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel) , 2007, Molecular ecology.

[12]  T. Sappington,et al.  Genetic structuring of boll weevil populations in the US based on RAPD markers , 2004, Insect molecular biology.

[13]  Stephanie Manel,et al.  Assignment methods: matching biological questions with appropriate techniques. , 2005, Trends in ecology & evolution.

[14]  W. Powell,et al.  How much effort is required to isolate nuclear microsatellites from plants? , 2003, Molecular ecology.

[15]  Robert W. Jones,et al.  Hosts and Seasonal Activity of the Boll Weevil (Coleoptera: Curculionidae) in Tropical and Subtropical Habitats of Northeastern Mexico , 1992 .

[16]  K. Kim,et al.  Boll Weevil (Anthonomus grandis Boheman) (Coleoptera: Curculionidae) Dispersal in the Southern United States: Evidence from Mitochondrial DNA Variation , 2004 .

[17]  R. Roehrdanz,et al.  Long Sections of Mitochondrial Dna Amplified from Fourteen Orders of Insects Using Conserved Polymerase Chain Reaction Primers , 1998 .

[18]  Genetic Profiling to Determine Potential Origins of Boll Weevils (Coleoptera: Curculionidae) Captured in a Texas Eradication Zone: Endemicity, Immigration, or Sabotage? , 2008, Journal of economic entomology.

[19]  P. A. Glick The Distribution of Insects, Spiders, and Mites in the Air , 1939 .

[20]  R. Giordano,et al.  Genes, gene flow and adaptation of Diabrotica virgifera virgifera , 2009 .

[21]  D. Bottrell,et al.  An Appraisal of a 10-Year Effort to Prevent the Westward Spread of the Boll Weevil , 1975 .

[22]  K. Kim,et al.  Utility of EST-derived SSRs as population genetics markers in a beetle. , 2008, The Journal of heredity.

[23]  I. Stirling,et al.  Microsatellite analysis of population structure in Canadian polar bears , 1995, Molecular ecology.

[24]  J. Westbrook,et al.  Temporal Changes in Genetic Variation of Boll Weevil (Coleoptera: Curculionidae) Populations, and Implications for Population Assignment in Eradication Zones , 2011 .

[25]  B. Rannala,et al.  Detecting immigration by using multilocus genotypes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. V. Baker,et al.  Potential for Escape of Live Boll Weevils (Coleoptera: Curculionidae) into Cottonseed, Motes, and Cleaned Lint at the Cotton Gin , 2004, Journal of economic entomology.

[27]  A. Lanteri,et al.  Population structure of the boll weevil in cotton fields and subtropical forests of South America: a bayesian approach , 2007, Genetica.

[28]  Robert J Toonen,et al.  Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. , 2006, Ecology letters.

[29]  J. Kovach,et al.  A Simulation Model Examining Boll Weevil Dispersal: Historical and Current Situations , 1990 .

[30]  T. Als,et al.  A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment , 2010, BMC Genetics.

[31]  K. Kim,et al.  Using Genetic Markers and Population Assignment Techniques to Infer Origin of Boll Weevils (Coleoptera: Curculionidae) Unexpectedly Captured Near an Eradication Zone in Mexico , 2006 .

[32]  J. Westbrook,et al.  Multidisciplinary fingerprints: forensic reconstruction of an insect reinvasion , 2010, Journal of The Royal Society Interface.

[33]  C. Allen,et al.  A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae) , 2011, International journal of biometeorology.

[34]  A. Estoup,et al.  Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity , 2008, Molecular ecology.

[35]  R. Hellmich,et al.  Spatial and Temporal Genetic Analyses Show High Gene Flow Among European Corn Borer (Lepidoptera: Crambidae) Populations Across the Central U.S. Corn Belt , 2009, Environmental entomology.

[36]  L. Zane,et al.  Strategies for microsatellite isolation: a review , 2002, Molecular ecology.

[37]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[38]  A. Cognato,et al.  Genetic analysis of emerald ash borer (Agrilus planipennis Fairmaire) populations in Asia and North America , 2011, Biological Invasions.

[39]  W. D. Hunter The boll weevil problem , 1909 .

[40]  Xingfu Jiang,et al.  Amplified Fragment Length Polymorphism Analysis of Mythimna separata (Lepidoptera: Noctuidae) Geographic and Melanic Laboratory Populations in China , 2007, Journal of economic entomology.

[41]  R. van den Bosch Boll weevil eradication. , 1974, Science.

[42]  T. Guillemaud,et al.  Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance , 2007 .

[43]  J. L. Goodenough,et al.  Mechanism of Southward Migration of a Noctuid Moth [Agrotis Ipsilon (Hufnagel)]: A Complete Migrant , 1993 .

[44]  M. Buteler,et al.  Migration and dispersal of Anthonomus grandis (Coleoptera: Curculionidae) in South America , 2007 .

[45]  T. Sappington,et al.  Variation in Boll Weevil (Coleoptera: Curculionidae) Captures in Pheromone Traps Arising from Wind Speed Moderation by Brush Lines , 2000 .

[46]  F. Allendorf,et al.  Introduction: Population Biology, Evolution, and Control of Invasive Species , 2003 .

[47]  Jennifer L. Petzold-Maxwell,et al.  Western corn rootworm and Bt maize: challenges of pest resistance in the field. , 2012, GM crops & food.

[48]  J. Riley,et al.  Long-distance migration of aphids and other small insects in northeast India , 1995 .

[49]  B. Siegfried,et al.  Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. , 2009, The Journal of heredity.

[50]  M. Whitlock,et al.  Indirect measures of gene flow and migration: FST≠1/(4Nm+1) , 1999, Heredity.

[51]  Arnaud Estoup,et al.  Genetic assignment methods for the direct, real‐time estimation of migration rate: a simulation‐based exploration of accuracy and power , 2004, Molecular ecology.

[52]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[53]  J. Perry,et al.  Rapid microsatellite development for water striders by next-generation sequencing. , 2011, The Journal of heredity.

[54]  J. White,et al.  Seasonal Variation in the Height of Boll Weevil Flight , 1977 .

[55]  J. Slate,et al.  Mining online genomic resources in Anolis carolinensis facilitates rapid and inexpensive development of cross‐species microsatellite markers for the Anolis lizard genus , 2011, Molecular ecology resources.

[56]  Steven D. Miller,et al.  Detecting Invisible Migrants: An Application of Genetic Methods to Estimate Migration Rates , 2009 .

[57]  Arnaud Estoup,et al.  Multiple Transatlantic Introductions of the Western Corn Rootworm , 2005, Science.

[58]  R. Roehrdanz Genetic Differentiation of Southeastern Boll Weevil and Thurberia Weevil Populations of Anthonomus grandis (Coleoptera: Curculionidae) Using Mitochondrial DNA , 2001 .

[59]  Bruce Rannala,et al.  Bayesian inference of recent migration rates using multilocus genotypes. , 2003, Genetics.

[60]  F. Allendorf,et al.  What can genetics tell us about population connectivity? , 2010, Molecular ecology.

[61]  H. Robertson,et al.  The Application and Performance of Single Nucleotide Polymorphism Markers for Population Genetic Analyses of Lepidoptera , 2011, Front. Gene..

[62]  A. Lanteri,et al.  Dispersal of the Cotton Boll Weevil (Coleoptera: Curculionidae) in South America: Evidence of RAPD Analysis , 2004, Genetica.

[63]  G Luikart,et al.  New methods employing multilocus genotypes to select or exclude populations as origins of individuals. , 1999, Genetics.

[64]  A. Michel,et al.  Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines , 2010, PloS one.

[65]  M. Parajulee,et al.  Dispersal of Boll Weevils (Coleoptera: Curculionidae) from Cotton Modules Before Ginning , 2006, Journal of economic entomology.

[66]  L. Taylor,et al.  Insect migration, flight periodicity and the boundary layer , 1974 .

[67]  R. Hellmich,et al.  Genetic structure and gene flow among European corn borer populations from the Great Plains to the Appalachians of North America , 2011 .

[68]  J. Nagaraju,et al.  Microsatellite flanking region similarities among different loci within insect species , 2007, Insect molecular biology.

[69]  E. Petit,et al.  Molecular Estimation of Dispersal for Ecology and Population Genetics , 2009 .

[70]  A. Lanteri,et al.  Diversity of Boll Weevil Populations in South America: A Phylogeographic Approach , 2006, Genetica.

[71]  Jennifer L. Petzold-Maxwell,et al.  Field-Evolved Resistance to Bt Maize by Western Corn Rootworm , 2011, PloS one.

[72]  G. Luikart,et al.  Conservation and the genetics of populations , 2006 .

[73]  D. Hardee,et al.  Long-Range Dispersal of Boll Weevils Determined with Wing Traps Baited with Males , 1970 .

[74]  H. Loxdale,et al.  Tracking movement in small insect pests, with special reference to aphid populations , 2004 .

[75]  Arnaud Estoup,et al.  Reconstructing routes of invasion using genetic data: why, how and so what? , 2010, Molecular ecology.

[76]  M. S. Hoddle,et al.  Population biology of invasive species. , 2001 .

[77]  K. Kim,et al.  Molecular genetic variation of boll weevil populations in North America estimated with microsatellites: Implications for patterns of dispersal , 2006, Genetica.

[78]  James W. Smith Boll Weevil Eradication: Area-Wide Pest Management , 1998 .

[79]  J. Willers,et al.  Stochastic model for studying boll weevil dispersal , 1991 .

[80]  J. Felsenstein,et al.  Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. , 1999, Genetics.

[81]  K. Kim,et al.  Genetic Structuring of Western Corn Rootworm (Coleoptera: Chrysomelidae) Populations in the United States Based on Microsatellite Loci Analysis , 2005 .

[82]  D. Reynolds,et al.  The migration of insect vectors of plant and animal viruses. , 2006, Advances in virus research.

[83]  Michael C Whitlock,et al.  The incomplete natural history of mitochondria , 2004, Molecular ecology.

[84]  Beet Webworm (Lepidoptera: Pyralidae) Migration in China: Evidence from Genetic Markers , 2010, Environmental entomology.

[85]  S. Toepfer,et al.  Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera , 2010, Evolutionary applications.

[86]  K. Holsinger,et al.  Genetics in geographically structured populations: defining, estimating and interpreting FST , 2009, Nature Reviews Genetics.

[87]  Gretchen D. Jones,et al.  The uses of pollen and its implication for Entomology , 2001 .

[88]  K. Kim,et al.  Isolation and characterization of polymorphic microsatellite loci in the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) , 2004 .

[89]  R. Hellmich,et al.  Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research. , 2009, Genome.

[90]  Rudolf Jander,et al.  Ecological aspects of spatial orientation , 1975 .

[91]  P. Fryxell,et al.  Origin and dispersal of the boll weevil. , 1986 .

[92]  M. Parajulee,et al.  Potential for Transport of Boll Weevils (Coleoptera: Curculionidae) to the Cotton Gin within Cotton Modules , 2004, Journal of economic entomology.

[93]  N. Miller,et al.  High-Throughput Transcriptome Sequencing for SNP and Gene Discovery in a Moth , 2012 .

[94]  A. Punt,et al.  Integrating genetic data into management of marine resources: how can we do it better? , 2008 .

[95]  J. Cornuet,et al.  GENECLASS2: a software for genetic assignment and first-generation migrant detection. , 2004, The Journal of heredity.

[96]  S. Wright,et al.  Genetical Structure of Populations , 1950, Nature.

[97]  Juan D. López,et al.  Direct Evidence for Meteorologically Driven Long‐Range Dispersal of an Economically Important Moth , 1989 .

[98]  R. Draxler HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website , 2010 .

[99]  M. Wingfield,et al.  Microsatellite discovery by deep sequencing of enriched genomic libraries. , 2009, BioTechniques.