A CMOS Vision Sensor for Background Subtraction

Background subtraction is one of the first steps in many video processing algorithms. Thus, a real-time processing with low power consumption is convenient for different applications where power hungry devices with high computational capabilities can not be deployed. This work presents the design of a 24×56 pixel proof-of-concept 0.18 μm standard CMOS vision sensor chip implementing the foreground detection algorithm Hardware Oriented Pixel Based Adaptive Segmenter (HO-PBAS) on the focal plane. Simulation results show a maximum processing speed of 2000 fps with a figure of merit of 1.3 μW/pixel at 60 fps and a pixel pitch of 47 μm in a four pixels per processing element configuration.

[1]  Volker Eiselein,et al.  High-Speed tracking-by-detection without using image information , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[2]  Bin Wang,et al.  Mixed signal SIMD processor array vision chip for real-time image processing , 2013 .

[3]  M. Gottardi,et al.  A 33 $\mu$ W 64$\,\times\,$ 64 Pixel Vision Sensor Embedding Robust Dynamic Background Subtraction for Event Detection and Scene Interpretation , 2013, IEEE Journal of Solid-State Circuits.

[4]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[5]  Beatriz Blanco-Filgueira,et al.  Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications , 2018, IEEE Internet of Things Journal.

[6]  Tomasz Kryjak,et al.  Real-time hardware–software embedded vision system for ITS smart camera implemented in Zynq SoC , 2018, Journal of Real-Time Image Processing.

[7]  Ángel Rodríguez-Vázquez,et al.  A switched‐capacitor skew‐tent map implementation for random number generation , 2017, Int. J. Circuit Theory Appl..

[8]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[9]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[10]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[11]  Dominique Ginhac,et al.  A high speed programmable focal-plane SIMD vision chip , 2010 .

[12]  Victor M. Brea,et al.  In-pixel analog memories for a pixel-based background subtraction algorithm on CMOS vision sensors , 2018, Int. J. Circuit Theory Appl..

[13]  Fei Qiao,et al.  Processing Near Sensor Architecture in Mixed-Signal Domain With CMOS Image Sensor of Convolutional-Kernel-Readout Method , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Ákos Zarándy,et al.  Focal-Plane Sensor-Processor Chips , 2014 .

[15]  Ari Paasio,et al.  MIPA4k: Mixed-Mode Cellular Processor Array , 2011 .

[16]  Ángel Rodríguez-Vázquez,et al.  Low-Power CMOS Vision Sensor for Gaussian Pyramid Extraction , 2017, IEEE Journal of Solid-State Circuits.