暂无分享,去创建一个
Gilles Dowek | Frédéric Blanqui | Gabriel Hondet | François Thiré | Émilie Grienenberger | Gilles Dowek | F. Blanqui | Gabriel Hondet | Emilie Grienenberger | F. Thiré | Émilie Grienenberger
[1] F. Blanqui,et al. Encoding of Predicate Subtyping with Proof Irrelevance in the λΠ-Calculus Modulo Theory , 2021, TYPES.
[2] Frédéric Blanqui,et al. Type Safety of Rewrite Rules in Dependent Types , 2020, FSCD.
[3] Gabriel Hondet,et al. The New Rewriting Engine of Dedukti (System Description) , 2020, FSCD.
[4] F. Thiré. Interoperability between proof systems using the logical framework Dedukti. (Interopérabilité entre systèmes de preuve en utilisant le cadre logique Dedukti) , 2020 .
[5] G. Genestier. Dependently-Typed Termination and Embedding of Extensional Universe-Polymorphic Type Theory using Rewriting. (Terminaison en présence de types dépendants et encodage par réécriture d'une théorie des types extensionelle avec polymorphisme d'univers) , 2020 .
[6] François Thiré. Sharing a Library between Proof Assistants: Reaching out to the HOL Family , 2018, LFMTP@FSCD.
[7] Frédéric Gilbert. Extending higher-order logic with predicate subtyping: Application to PVS. (Extension de la logique d'ordre supérieur avec le sous-typage par prédicats) , 2018 .
[8] Luiz Carlos Pereira,et al. Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz’ Ecumenical System , 2017 .
[9] Gilles Dowek. On the definition of the classical connectives and quantifiers , 2016, ArXiv.
[10] Ali Assaf,et al. A framework for defining computational higher-order logics. (Un cadre de définition de logiques calculatoires d'ordre supérieur) , 2015 .
[11] D. Prawitz. Classical versus intuitionistic logic , 2015 .
[12] Olivier Hermant,et al. Semantic A-translations and Super-Consistency Entail Classical Cut Elimination , 2013, LPAR.
[13] Denis Cousineau,et al. Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo , 2007, TLCA.
[14] Frédéric Blanqui,et al. Type theory and rewriting , 2006, ArXiv.
[15] Gilles Dowek,et al. Arithmetic as a Theory Modulo , 2005, RTA.
[16] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[17] Gilles Dowek,et al. Proof normalization modulo , 1998, Journal of Symbolic Logic.
[18] Enno Ohlebusch,et al. Term Rewriting Systems , 2002 .
[19] Shankar Natarajan,et al. The Formal Semantics of PVS , 1999 .
[20] Antonius J. C. Hurkens. A Simplification of Girard's Paradox , 1995, TLCA.
[21] J. H. Geuvers,et al. The calculus of constructions and higher order logic , 1995 .
[22] Lawrence C. Paulson,et al. Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.
[23] Vincent van Oostrom,et al. Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..
[24] Furio Honsell,et al. A framework for defining logics , 1993, JACM.
[25] Jean-Pierre Jouannaud,et al. Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[26] Wolfgang Thomas,et al. Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .
[27] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[28] Gopalan Nadathur,et al. An Overview of Lambda-PROLOG , 1988, ICLP/SLP.
[29] Thierry Coquand,et al. An Analysis of Girard's Paradox , 1986, LICS.
[30] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[31] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[32] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[33] L. M.-T.. Grundzüge der theoretischen Logik , 1929, Nature.