Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice

[1]  S. Tonegawa,et al.  Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice , 1994, Cell.

[2]  S. Nakanishi,et al.  Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells , 1994, Neuron.

[3]  M. Stanton,et al.  Eyeblink conditioning in the infant rat: an animal model of learning in developmental neurotoxicology. , 1994, Environmental health perspectives.

[4]  N. Hartell Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. , 1994, Neuroreport.

[5]  D. Linden,et al.  Long-term synaptic depression in the mammalian brain , 1994, Neuron.

[6]  R. F. Thompson,et al.  Organization of memory traces in the mammalian brain. , 1994, Annual review of neuroscience.

[7]  Alcino J. Silva,et al.  Modified hippocampal long-term potentiation in PKCγ-mutant mice , 1993, Cell.

[8]  S. Tonegawa,et al.  PKCγ mutant mice exhibit mild deficits in spatial and contextual learning , 1993, Cell.

[9]  Richard F. Thompson,et al.  Localization of a memory trace in the mammalian brain. , 1993, Science.

[10]  T. Dawson,et al.  Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  M. Mauk,et al.  Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  E. Kandel,et al.  Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. , 1992, Science.

[13]  J. Bloedel Functional heterogeneity with structural homogeneity: How does the cerebellum operate? , 1992 .

[14]  R. Clark,et al.  Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. , 1992, Behavioral neuroscience.

[15]  R. F. Thompson,et al.  Disruption of classical eyelid conditioning after cerebellar lesions: damage to a memory trace system or a simple performance deficit? , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  M. Stanton,et al.  Eyeblink conditioning in the developing rat. , 1992, Behavioral Neuroscience.

[17]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Huganir,et al.  Cellular localization of a metabotropic glutamate receptor in rat brain , 1992, Neuron.

[19]  S. Nakanishi,et al.  Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: An in situ hybridization study in adult and developing rat , 1992, The Journal of comparative neurology.

[20]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[21]  Alcino J. Silva,et al.  Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[22]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[23]  S. Nakanishi,et al.  Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRl, in transfected CHO cells , 1992, Neuron.

[24]  W T Thach,et al.  The cerebellum and the adaptive coordination of movement. , 1992, Annual review of neuroscience.

[25]  D. Linden,et al.  Participation of postsynaptic PKC in cerebellar long-term depression in culture. , 1991, Science.

[26]  J. Harvey,et al.  Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. , 1991, The Journal of physiology.

[27]  A. Konnerth,et al.  Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells , 1991, Neuron.

[28]  M. Dickinson,et al.  A long-term depression of AMPA currents in cultured cerebellar purkinje neurons , 1991, Neuron.

[29]  A. Konnerth,et al.  Synaptic‐ and agonist‐induced excitatory currents of Purkinje cells in rat cerebellar slices. , 1991, The Journal of physiology.

[30]  S. Nakanishi,et al.  Sequence and expression of a metabotropic glutamate receptor , 1991, Nature.

[31]  F. Crépel,et al.  Pairing of pre‐ and postsynaptic activities in cerebellar Purkinje cells induces long‐term changes in synaptic efficacy in vitro. , 1991, The Journal of physiology.

[32]  T. Hirano Effects of postsynaptic depolarization in the induction of synaptic depression between a granule cell and a Purkinje cell in rat cerebellar culture , 1990, Neuroscience Letters.

[33]  Nestor A. Schmajuk,et al.  Eyeblink conditioning in rats , 1990, Physiology & Behavior.

[34]  C. Sotelo Cerebellar synaptogenesis: what we can learn from mutant mice. , 1990, The Journal of experimental biology.

[35]  M. Sakurai Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Konnerth,et al.  Synaptic currents in cerebellar Purkinje cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Steinmetz,et al.  Acquisition of classical conditioning without cerebellar cortex , 1989, Behavioural Brain Research.

[38]  J. Welsh,et al.  Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Y. Prigent [Long term depression]. , 1989, Annales medico-psychologiques.

[40]  F. Crépel,et al.  Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study , 1988, Brain Research.

[41]  R. Skelton,et al.  Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats. , 1988, Behavioral neuroscience.

[42]  M. Kano,et al.  Mode of induction of long-term depression at parallel fibre—Purkinje cell synapses in rabbit cerebellar cortex , 1988, Neuroscience Research.

[43]  M. Kano,et al.  The glutamate receptor subtype mediating parallel fibre-Purkinje cell transmission in rabbit cerebellar cortex , 1988, Neuroscience Research.

[44]  M. Sakurai Synaptic modification of parallel fibre‐Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. , 1987, The Journal of physiology.

[45]  M. Kano,et al.  Quisqualate receptors are specifically involved in cerebellar synaptic plasticity , 1987, Nature.

[46]  Richard F. Thompson The neurobiology of learning and memory. , 1986, Science.

[47]  M. Kano,et al.  Long-term depression of parallel fibre synapses following stimulation of climbing fibres , 1985, Brain Research.

[48]  伊藤 正男 The cerebellum and neural control , 1984 .

[49]  David A. McCormick,et al.  Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response , 1982, Brain Research.

[50]  G. A. Clark,et al.  Initial localization of the memory trace for a basic form of learning. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[52]  F. Crépel,et al.  Dendritic and axonic fields of purkinje cells in developing and X-irradiated rat cerebellum. a comparative study using intracellular staining with horseradish peroxidase , 1980, Neuroscience.

[53]  J. Altman,et al.  Effects of differential interference with postnatal cerebellar neurogenesis on motor performance, activity level, and maze learning of rats: a developmental study. , 1979, Journal of comparative and physiological psychology.

[54]  J. Disterhoft,et al.  Nictating membrane conditioning to tone in the immobilized albino rabbit , 1977, Brain Research.

[55]  M. Jones,et al.  METHYLAZOXYMETHANOL‐INDUCED ABERRANT PURKINJE CELL DENDRITIC DEVELOPMENT , 1977, Journal of neuropathology and experimental neurology.

[56]  D. Woodward,et al.  Purkinje cell dendritic alterations after transient developmental injury of the external granular layer , 1975, Brain Research.

[57]  P. Rakić,et al.  Role of cell interaction in development of dendritic patterns. , 1975, Advances in neurology.

[58]  J. Altman,et al.  Locomotor deficits in adult rats with moderate to massive retardation of cerebellar development during infancy. , 1973, Behavioral biology.

[59]  R. Hall Some properties of conditioned and unconditioned eyelid reflexes in the albino rat , 1973 .

[60]  J. Altman Experimental reorganization of the cerebellar cortex. IV. Parallel fiber reorientation following regeneration of the external germinal layer , 1973, The Journal of comparative neurology.

[61]  P. Rakić,et al.  Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Albus A Theory of Cerebellar Function , 1971 .

[63]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[64]  I. Gormezano,et al.  Nictitating Membrane: Classical Conditioning and Extinction in the Albino Rabbit , 1962, Science.

[65]  I. Gormezano,et al.  Acquisition and Extinction of the Classically Conditioned Eyelid Response in the Albino Rabbit , 1962, Science.