An integral equation-based numerical solver for Taylor states in toroidal geometries

We develop an algorithm for the numerical calculation of Taylor states in toroidal and toroidal shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter $\lambda$ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

[1]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[2]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[3]  S. Hudson,et al.  Minimally constrained model of self-organized helical states in reversed-field pinches. , 2013, Physical review letters.

[4]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[5]  Anders Karlsson,et al.  Determination of Normalized Magnetic Eigenfields in Microwave Cavities , 2014, IEEE Transactions on Microwave Theory and Techniques.

[6]  Johan Helsing,et al.  Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning , 2008, J. Comput. Phys..

[7]  Howard S. Cohl,et al.  Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function , 2009, 0910.1193.

[8]  T. W. Kornack,et al.  Scaling studies of spheromak formation and equilibrium , 1998 .

[9]  R. Hiptmair,et al.  Self-adjoint curl operators , 2008, 0809.0826.

[10]  Bengt Fornberg,et al.  Magnetic Field Confinement in the Solar Corona. I. Force-free Magnetic Fields , 2004 .

[11]  Josef A. Sifuentes,et al.  Randomized methods for rank-deficient linear systems , 2014, 1401.3068.

[12]  Per-Gunnar Martinsson,et al.  High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane , 2014, Adv. Comput. Math..

[13]  Allen H. Boozer,et al.  Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus , 2005 .

[14]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..

[15]  Charles L. Epstein,et al.  Debye Sources, Beltrami Fields, and a Complex Structure on Maxwell Fields , 2013, 1308.5425.

[16]  R J Fonck,et al.  Tokamak startup using point-source dc helicity injection. , 2009, Physical review letters.

[17]  Paul Bellan,et al.  Fundamentals of Plasma Physics , 2006 .

[18]  Michael O'Neil,et al.  Exact axisymmetric Taylor states for shaped plasmas , 2014 .

[19]  John P. Boyd Computing Zeros on a Real Interval through Chebyshev Expansion and Polynomial Rootfinding , 2002, SIAM J. Numer. Anal..

[20]  J. Freidberg,et al.  “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .

[21]  Andrew J. Majda,et al.  The Beltrami spectrum for incompressible fluid flows , 1988 .

[22]  Rainer Picard,et al.  On a selfadjoint realization of curl in exterior domains , 1998 .

[23]  Per Helander,et al.  The role of edge current-driven modes in ELM activity , 2006 .

[24]  J. Taylor,et al.  Relaxation revisited , 2012 .

[25]  Anders Karlsson,et al.  Determination of normalized electric eigenfields in microwave cavities with sharp edges , 2016, J. Comput. Phys..

[26]  Charles L. Epstein,et al.  A high-order wideband direct solver for electromagnetic scattering from bodies of revolution , 2017, J. Comput. Phys..

[27]  Ralf Schweizer,et al.  Integral Equation Methods In Scattering Theory , 2016 .

[28]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[29]  A. Boag,et al.  Method of generalized Debye sources for the analysis of electromagnetic scattering by arbitrary shaped bodies , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[30]  Tahar Zamène Boulmezaoud,et al.  Computing Beltrami Fields , 2009, SIAM J. Sci. Comput..

[31]  J. Bremer On the Nyström discretization of integral equations on planar curves with corners , 2012 .

[32]  P. Werner,et al.  On an integral equation in electromagnetic diffraction theory , 1966 .

[33]  Zoran Mikic,et al.  RECONSTRUCTING THE SOLAR CORONAL MAGNETIC FIELD AS A FORCE-FREE MAGNETIC FIELD , 1997 .

[34]  Charles L. Epstein,et al.  Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II , 2008, 0808.3369.

[35]  C. Papas Theory of electromagnetic wave propagation , 1965 .

[36]  Hong Li,et al.  Woltjer-Taylor state without Taylor's conjecture: plasma relaxation at all wavelengths. , 2012, Physical review letters.

[37]  R. L. Dewar,et al.  Non-axisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions , 2011, 1107.5202.

[38]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[39]  Anders Karlsson,et al.  An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces , 2013, J. Comput. Phys..

[40]  R. J. Hastie,et al.  The Taylor relaxed state in tokamaks and the sawtooth collapse , 1989 .

[41]  B. C. Carlson Computing elliptic integrals by duplication , 1979 .

[42]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[43]  R. L. Dewar,et al.  Computation of multi-region relaxed magnetohydrodynamic equilibria , 2012, 1211.3072.

[44]  Per-Gunnar Martinsson,et al.  A high-order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces , 2011, J. Comput. Phys..

[45]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[46]  S. Chandrasekhar,et al.  ON FORCE-FREE MAGNETIC FIELDS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[47]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[48]  M. T. Vaughn Geometry in Physics , 2008 .

[49]  R. Kress,et al.  On constant-alpha force-free fields in a torus , 1986 .

[50]  H. Cohl,et al.  A Compact Cylindrical Green’s Function Expansion for the Solution of Potential Problems , 1999 .

[51]  T. Amari,et al.  Approximation of linear force-free fields in bounded 3-D domains , 2000 .

[52]  H. Moses,et al.  Solution of Maxwell's Equations in Terms of a Spinor Notation: the Direct and Inverse Problem , 1959 .

[53]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Martinsson,et al.  High-order accurate Nystrom discretization of integral equations with weakly singular kernels on smooth curves in the plane , 2011, 1112.6262.

[55]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[56]  Lin Zhao,et al.  Robust and Efficient Solution of the Drum Problem via Nyström Approximation of the Fredholm Determinant , 2014, SIAM J. Numer. Anal..

[57]  Abhay K. Ram,et al.  Anomalous diffusion of field lines and charged particles in Arnold-Beltrami-Childress force-free magnetic fields , 2014 .

[58]  Rainer Kress,et al.  On an exterior boundary-value problem for the time-harmonic Maxwell equations with boundary conditions for the normal components of the electric and magnetic field , 1986 .

[59]  Oscar P. Bruno,et al.  Existence of three‐dimensional toroidal MHD equilibria with nonconstant pressure , 1996 .

[60]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[61]  James Bremer,et al.  Universal quadratures for boundary integral equations on two-dimensional domains with corners , 2010, J. Comput. Phys..

[62]  M. Schaffer,et al.  Observation of a helical self-organized state in a compact toroidal plasma. , 2009, Physical review letters.

[63]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .