An automated time-window selection algorithm for seismic tomography

We present FLEXWIN, an open source algorithm for the automated selection of time windows on pairs of observed and synthetic seismograms. The algorithm was designed specifically to accommodate synthetic seismograms produced from 3-D wavefield simulations, which capture complex phases that do not necessarily exist in 1-D simulations or traditional traveltime curves. Relying on signal processing tools and several user-tuned parameters, the algorithm is able to include these new phases and to maximize the number of measurements made on each seismic record, while avoiding seismic noise. Our motivation is to use the algorithm for iterative tomographic inversions, in which the synthetic seismograms change from one iteration to the next. Hence, automation is needed to handle the volume of measurements and to allow for an increasing number of windows at each model iteration. The algorithm is sufficiently flexible to be adapted to many tomographic applications and seismological scenarios, including those based on synthetics generated from 1-D models. We illustrate the algorithm using data sets from three distinct regions: the entire globe, the Japan subduction zone, and southern California.

[1]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[2]  R. V. Allen,et al.  Automatic phase pickers: Their present use and future prospects , 1982 .

[3]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[4]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[5]  M. Cara,et al.  Waveform inversion using secondary observables , 1987 .

[6]  G. Nolet Partitioned waveform inversion and two‐dimensional structure under the network of autonomously recording seismographs , 1990 .

[7]  John C. VanDecar,et al.  Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares , 1990 .

[8]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[9]  A. Hasegawa,et al.  Seismic velocity structure of the crust beneath the Japan Islands , 1992 .

[10]  Toshiro Tanimoto,et al.  Waveforms of long-period body waves in a slightly aspherical earth model , 1993 .

[11]  Hiroo Kanamori,et al.  Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events , 1994 .

[12]  Peter M. Shearer,et al.  Characterization of global seismograms using an automatic-picking algorithm , 1994, Bulletin of the Seismological Society of America.

[13]  Lisa A. Wald,et al.  The Southern California Network Bulletin: 1990-1993 Summary , 1995 .

[14]  Jeannot Trampert,et al.  Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds , 1995 .

[15]  G. Masters,et al.  Constraints on global phase velocity maps from long-period polarization data , 1996 .

[16]  Jeroen Tromp,et al.  Measurements and global models of surface wave propagation , 1997 .

[17]  Hendrik Jan van Heijst,et al.  Measuring surface-wave overtone phase velocities using a mode-branch stripping technique , 1997 .

[18]  Christopher John Young,et al.  A comparison of select trigger algorithms for automated global seismic phase and event detection , 1998, Bulletin of the Seismological Society of America.

[19]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[20]  Guust Nolet,et al.  Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .

[21]  É. Debayle SV-wave azimuthal anisotropy in the Australian upper mantle: preliminary results from automated Rayleigh waveform inversion , 1999 .

[22]  Charlotte A. Rowe,et al.  Automatic Phase Pick Refinement and Similar Event Association in Large Seismic Datasets , 2000 .

[23]  Egill Hauksson,et al.  Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California , 2000 .

[24]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[25]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[26]  Brian L. N. Kennett,et al.  Automatic Phase-Detection and Identification by Full Use of a Single Three-Component Broadband Seismogram , 2000 .

[27]  Thomas H. Jordan,et al.  Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .

[28]  Anatoli L. Levshin,et al.  Automated Detection, Extraction, and Measurement of Regional Surface Waves , 2001 .

[29]  F. Dahlen,et al.  Fréchet kernels for body-wave amplitudes , 2001 .

[30]  Brian L. N. Kennett,et al.  Phase identification and attribute analysis of broadband seismograms at far-regional distances , 2001 .

[31]  B. Kennett,et al.  Non-linear waveform inversion for surface waves with a neighbourhood algorithm—application to multimode dispersion measurements , 2002 .

[32]  J. Ritsema,et al.  Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes , 2002 .

[33]  D. Komatitsch,et al.  The Spectral-Element Method, Beowulf Computing, and Global Seismology , 2002, Science.

[34]  Reinoud Sleeman,et al.  Single station real-time P and S phase pickers for seismic observatories , 2003 .

[35]  Jean-Pierre Vilotte,et al.  Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models , 2003 .

[36]  G. Nolet,et al.  Upper mantle beneath Southeast Asia from S velocity tomography , 2003 .

[37]  Peter M. Shearer,et al.  Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes , 2003 .

[38]  É. Beucler,et al.  Surface wave higher-mode phase velocity measurements using a roller-coaster-type algorithm , 2003 .

[39]  Hendrik Jan van Heijst,et al.  Global transition zone tomography , 2004 .

[40]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[41]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[42]  D. Komatitsch,et al.  Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method , 2004 .

[43]  G. Nolet,et al.  Global upper‐mantle structure from finite‐frequency surface‐wave tomography , 2004 .

[44]  Y. Capdeville An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the Earth , 2005 .

[45]  Kim B. Olsen,et al.  Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models , 2005 .

[46]  R. Hilst,et al.  Automated multimode inversion of surface and S waveforms , 2005 .

[47]  John Clinton,et al.  An Evaluation of the SCSN Moment Tensor Solutions: Robustness of the Mw Magnitude Scale, Style of Faulting, and Automation of the Method , 2006 .

[48]  Ying Tan Broadband waveform modeling over a dense seismic network , 2006 .

[49]  P. Shearer,et al.  Mapping attenuation beneath North America using waveform cross‐correlation and cluster analysis , 2006 .

[50]  Jeannot Trampert,et al.  FAST TRACK PAPER: Surface wave tomography: finite-frequency effects lost in the null space , 2006 .

[51]  G. Nolet,et al.  Measuring finite‐frequency body‐wave amplitudes and traveltimes , 2006 .

[52]  J. Tromp,et al.  A Structural VP Model of the Salton Trough, California, and Its Implications for Seismic Hazard , 2006 .

[53]  F. Dahlen,et al.  Surface-wave group-delay and attenuation kernels , 2006 .

[54]  J. Tromp,et al.  Finite-Frequency Kernels Based on Adjoint Methods , 2006 .

[55]  B. Romanowicz,et al.  A Three-Dimensional Radially-Anisotropic Model of Shear Velocity in the Whole Mantle , 2006 .

[56]  S. Lebedev,et al.  Global Love wave overtone measurements , 2007 .

[57]  Jeroen Tromp,et al.  Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods , 2007 .

[58]  P. Shearer,et al.  Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005 , 2007 .

[59]  H. Kanamori,et al.  Waveform modeling of the slab beneath Japan , 2007 .

[60]  D. Giardini,et al.  Petascale computing and resolution in global seismic tomography , 2007 .

[61]  Thomas H. Jordan,et al.  Full 3D Tomography for the Crustal Structure of the Los Angeles Region , 2007 .

[62]  Jeroen Tromp,et al.  Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods , 2007 .

[63]  P. Shearer,et al.  A three-dimensional crustal seismic velocity model for southern California from a composite event method , 2007 .

[64]  Carl Tape,et al.  Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .

[65]  Jeroen Tromp,et al.  Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods , 2008 .

[66]  Barbara Romanowicz,et al.  Using seismic waves to image Earth's internal structure , 2008, Nature.

[67]  P. Shearer,et al.  Shear and compressional velocity models of the mantle from cluster analysis of long‐period waveforms , 2008 .

[68]  P. Shearer,et al.  Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels , 2008 .