Electrochemical Behavior of Ascorbic Acid at Copper Germanate Nanowire Modified Electrode

[1]  N. Xia,et al.  Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties , 2011 .

[2]  C. Xia,et al.  A novel bio-electrochemical ascorbic acid sensor modified with Cu4(OH)6SO4 nanorods. , 2011, The Analyst.

[3]  J. Coleman,et al.  Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene , 2010 .

[4]  L. Pei,et al.  Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode , 2010 .

[5]  A. Barberis,et al.  New ultralow-cost telemetric system for a rapid electrochemical detection of vitamin C in fresh orange juice. , 2010, Analytical chemistry.

[6]  R. Apak,et al.  Development of a low-cost optical sensor for cupric reducing antioxidant capacity measurement of food extracts. , 2010, Analytical chemistry.

[7]  Y. Coffinier,et al.  Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan , 2010 .

[8]  E. Lindner,et al.  Lab-on-chip flow injection analysis system without an external pump and valves and integrated with an in line electrochemical detector. , 2009, Analytical chemistry.

[9]  Hyun Woo Park,et al.  Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles. , 2009, Luminescence : the journal of biological and chemical luminescence.

[10]  Kangbing Wu,et al.  Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica , 2009 .

[11]  L. Pei,et al.  Low temperature growth and characterizations of single crystalline CuGeO3nanowires , 2009 .

[12]  R. Compton,et al.  Exploring the origins of the apparent “electrocatalysis” observed at C60 film-modified electrodes , 2009 .

[13]  Winfried Vonau,et al.  Recent developments in electrochemical sensor application and technology—a review , 2009 .

[14]  A. Brolo,et al.  Protonation and deprotonation of cysteine and cystine monolayers probed by impedance spectroscopy , 2009 .

[15]  Shen-ming Chen,et al.  Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. , 2008, Biosensors & bioelectronics.

[16]  Sihui Zhan,et al.  Electrochemical Behaviors of Ascorbic Acid and Uric Acid in Ionic Liquid , 2008 .

[17]  Xiangjun Li,et al.  Determination of dopamine in the presence of ascorbic acid using poly(3,5-dihydroxy benzoic acid) film modified electrode. , 2008, Analytical biochemistry.

[18]  Aihua Liu Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. , 2008, Biosensors & bioelectronics.

[19]  Yücel Şahin,et al.  Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid , 2008, Sensors.

[20]  A. Bond,et al.  Investigation of mediated oxidation of ascorbic acid by ferrocenemethanol using large-amplitude Fourier transformed ac voltammetry under quasi-reversible electron-transfer conditions at an indium tin oxide electrode. , 2008, Analytical chemistry.

[21]  Kun Liu,et al.  Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. , 2007, Analytical chemistry.

[22]  Shuhong Yu,et al.  Layered copper metagermanate nanobelts: hydrothermal synthesis, structure, and magnetic properties. , 2007, Journal of the American Chemical Society.

[23]  Huangxian Ju,et al.  Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. , 2007, Analytical chemistry.

[24]  T. Nyokong,et al.  Electrocatalytic oxidation of thiocyanate, l-cysteine and 2-mercaptoethanol by self-assembled monolayer of cobalt tetraethoxy thiophene phthalocyanine , 2006 .

[25]  Hongwu Zhang,et al.  Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. , 2004, Biosensors & bioelectronics.

[26]  Jun Zhang,et al.  Electrochemical Determination of Ascorbic Acid at γ-MnO2 Modified Carbon Black Microelectrodes , 2004 .

[27]  M. Dávila,et al.  Capability of a carbon–polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid , 2004 .

[28]  G. Rivas,et al.  Carbon nanotubes paste electrode , 2003 .

[29]  O. Arrigoni,et al.  Ascorbic acid: much more than just an antioxidant. , 2002, Biochimica et biophysica acta.

[30]  Lei Zhang,et al.  Separation of anodic peaks of ascorbic acid and dopamine at an α-alanine covalently modified glassy carbon electrode , 2001 .

[31]  Miltiades I. Karayannis,et al.  Flow electrochemical determination of ascorbic acid in real samples using a glassy carbon electrode modified with a cellulose acetate film bearing 2,6-dichlorophenolindophenol , 2000 .

[32]  Richard G. Compton,et al.  Electrochemical detection of nitrate and nitrite at a copper modified electrode , 2000 .

[33]  M. Levine,et al.  Absorption, transport, and disposition of ascorbic acid in humans , 1998 .

[34]  S. Ferreira,et al.  Sensitive spectrophotometric determination of ascorbic acid in fruit juices and pharmaceutical formulations using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) , 1997 .

[35]  P. Righetti,et al.  Determination of total vitamin C in fruits by capillary zone electrophoresis. , 1993, Journal of chromatography.

[36]  L. Machlin Handbook of Vitamins , 1991 .

[37]  H. Schafer,et al.  Comparison of two methods of ascorbic acid determination in vegetables , 1990 .