Optimal synchronization of chaotic systems in noise

Optimal synchronization of two identical chaotic systems coupled in a drive/response manner is considered in the paper. We derive a relationship between the mean square synchronization error and the coupling parameters in the presence of noise. By minimizing the mean square synchronization error with respect to the coupling parameters, an optimal synchronization, which minimizes the synchronization error between the drive and response systems, can be achieved. It is shown that the optimal coupling parameters depend on both the global and local Lyapunov exponents of the chaotic drive system. However, they are independent of the noise power. We apply this approach to design optimal synchronization for various chaotic systems. The optimal design is then applied to chaotic communication and it can recover the information signal efficiently. Simulations show that our theoretical results are in good agreement with the numerical analysis.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[3]  Pi-Cheng Tung,et al.  Analysis and observer design in synchronization via a state feedback control method , 1997 .

[4]  Brown,et al.  Modeling and synchronizing chaotic systems from time-series data. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Clare D. McGillem,et al.  A chaotic direct-sequence spread-spectrum communication system , 1994, IEEE Trans. Commun..

[6]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[7]  Carroll,et al.  Desynchronization by periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Gauthier,et al.  Intermittent Loss of Synchronization in Coupled Chaotic Oscillators: Toward a New Criterion for High-Quality Synchronization. , 1996, Physical review letters.

[9]  N. Rulkov,et al.  Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds. , 1997, Chaos.

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Michael Peter Kennedy,et al.  SYNCHRONIZATION THEOREM FOR A CHAOTIC SYSTEM , 1995 .

[12]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[13]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[14]  Michael Peter Kennedy,et al.  Synchronization of dynamical systems : recent progress, potential applications and limitations , 1995 .

[15]  Brown,et al.  Synchronization of chaotic systems: The effects of additive noise and drift in the dynamics of the driving. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[17]  K. Otsuka,et al.  Experimental suppression of chaos in a modulated multimode laser. , 1997, Optics letters.

[18]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[19]  E. Ott,et al.  Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .

[20]  H. Abarbanel,et al.  Robustness and stability of synchronized chaos: an illustrative model , 1997 .

[21]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[22]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[23]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[24]  T. Kapitaniak,et al.  MONOTONE SYNCHRONIZATION OF CHAOS , 1996 .

[25]  He,et al.  Analysis and synthesis of synchronous periodic and chaotic systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  Maciej Ogorzalek,et al.  Taming chaos. I. Synchronization , 1993 .

[27]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[28]  J. Greene,et al.  The calculation of Lyapunov spectra , 1987 .