Pieceable fault-tolerant conversion between Steane and Reed-Muller quantum codes with neural network decoders.

Designing efficient fault-tolerant circuits for converting between two quantum codes is an effective way to realize universal fault-tolerant quantum computing. In this work, we adopt the round-robin circuit construction to design a conversion circuit between CSS 7-qubit error-correcting code and Reed-Muller 15-qubit code. We take the pieceable fault-tolerant protocol to guarantee the fault tolerance of our conversion circuit. A neural network decoding scheme is proposed to suppress the propagation of quantum errors. Our decoding scheme can effectively reduce the damaging effects of imperfect syndrome extraction operations and predict possible logical errors that occurred after the error correction process. We provide a detailed description of our syndrome data model and analyze the depolarizing noise threshold of our conversion circuit through numerical simulations of the stabilizer circuit.

[1]  Maxim Raginsky Scaling and Renormalization in Fault-Tolerant Quantum Computers , 2003, Quantum Inf. Process..

[2]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[3]  M. S. Zamani,et al.  Low-overhead code concatenation approaches for universal quantum computation , 2017, Quantum Information Processing.

[4]  R. Feynman Simulating physics with computers , 1999 .

[5]  Isaac L. Chuang,et al.  Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes , 2016, 1603.03948.

[6]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[7]  Raymond Laflamme,et al.  Architectural analysis of universal concatenated quantum codes , 2017 .

[8]  Raymond Laflamme,et al.  Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.

[9]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[10]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[11]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[12]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[13]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[14]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[15]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[16]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[17]  Raymond Laflamme,et al.  Overhead analysis of universal concatenated quantum codes , 2016, 1609.07497.

[18]  Guowu Yang,et al.  Concatenated pieceable fault-tolerant scheme for universal quantum computation , 2020 .

[19]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[20]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[21]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[22]  K. Colladay,et al.  Rewiring stabilizer codes , 2017, New Journal of Physics.

[23]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[24]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[28]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[29]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[30]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[31]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[32]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[33]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[34]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[35]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[36]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[37]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[38]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.