On the numerical treatment of linear-quadratic optimal control problems for general linear time-varying differential-algebraic equations

The development of numerical methods for finding optimal solutions of control problems modeled by differential-algebraic equations (DAEs) is an important task. Usually restrictions are placed on the DAE such as being semi-explicit. Here the numerical solution of optimal control problems with linear time-varying DAEs as the process and quadratic cost functionals is considered. The leading coefficient is allowed to be time-varying and the DAE may be of higher index. Both a direct transcription approach and the solution of the necessary conditions are examined for two important discretizations.

[1]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[2]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[3]  Peter Kunkel,et al.  Symmetric collocation methods for linear differential-algebraic boundary value problems , 2002, Numerische Mathematik.

[4]  J. Betts Trajectory optimization in the presence of uncertainty , 2006 .

[5]  Volker Mehrmann,et al.  Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index , 2008, Math. Control. Signals Syst..

[6]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[7]  Jeffery S. Logsdon,et al.  Accurate solution of differential-algebraic optimization problems , 1989 .

[8]  Uri M. Ascher,et al.  Collocation Software for Boundary Value Differential-Algebraic Equations , 1994, SIAM J. Sci. Comput..

[9]  M. Gerdts Direct Shooting Method for the Numerical Solution of Higher-Index DAE Optimal Control Problems , 2003 .

[10]  Ronald Stöver,et al.  Collocation methods for solving linear differential-algebraic boundary value problems , 2001, Numerische Mathematik.

[11]  Matthias Gerdts,et al.  Local Minimum Principle for Optimal Control Problems Subject to Differential-Algebraic Equations of Index Two , 2006 .

[12]  P. Daoutidis,et al.  Control of nonlinear differential algebraic equation systems , 1999 .

[13]  Marc C. Steinbach,et al.  Exploiting Invariants in the Numerical Solution of Multipoint Boundary Value Problems for DAE , 1998, SIAM J. Sci. Comput..

[14]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[15]  Stephen L. Campbell,et al.  Direct transcription solution of higher-index optimal control problems and the virtual index , 2007 .

[16]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[17]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[18]  Stephen L. Campbell,et al.  Some comments on DAE theory for IRK methods and trajectory optimization , 2000 .

[19]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[20]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[21]  Bruce A. Conway,et al.  Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .

[22]  W. Hager Numerical Analysis in Optimal Control , 2001 .

[23]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[24]  A. Backes,et al.  Optimale Steuerung der linearen DAE im Fall Index 2 , 2005 .

[25]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[27]  Stephen L. Campbell,et al.  A general form for solvable linear time varying singular systems of differential equations , 1987 .

[28]  Volker Mehrmann,et al.  Symmetric collocation for unstructured nonlinear differential-algebraic equations of arbitrary index , 2004, Numerische Mathematik.

[29]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..