Finding A Stable Solution of A System of Nonlinear Equations

This paper presents new methods for finding dynamically stable solutions of systems of nonlinear equations. The concepts of stability functions and the so-called stable solutions are defined. Based on those new concepts, two models of stable solutions and three stability functions are proposed. These stability functions are semismooth. Smoothing technology is applied to such stability functions. Smoothing Newton methods are proposed to solve the stable solution models. Convergence properties of these methods are studied. We report on numerical examples which illustrate the utility of the new approach.

[1]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[2]  Jill P. Reese,et al.  Projected Pseudotransient Continuation , 2008, SIAM J. Numer. Anal..

[3]  D. Hill,et al.  A general method for small signal stability analysis , 1998 .

[4]  R.J. Thomas,et al.  On voltage collapse in electric power systems , 1989, Conference Papers Power Industry Computer Application Conference.

[5]  G. Degla An overview of semi-continuity results on the spectral radius and positivity , 2008 .

[6]  Rajiv K. Varma,et al.  A method to determine closest Hopf bifurcation in power systems considering exciter and load dynamics , 1998, Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137).

[7]  Defeng Sun,et al.  Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems , 2002, SIAM J. Numer. Anal..

[8]  H. Schättler,et al.  Dynamics of large constrained nonlinear systems-a taxonomy theory [power system stability] , 1995, Proc. IEEE.

[9]  Michael Hintermüller,et al.  A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints , 2006, SIAM J. Optim..

[10]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[11]  Michael Ulbrich,et al.  Nonmonotone Trust-Region Methods for Bound-Constrained Semismooth Equations with Applications to Nonlinear Mixed Complementarity Problems , 2000, SIAM J. Optim..

[12]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[13]  David E. Keyes,et al.  Pseudotransient Continuation and Differential-Algebraic Equations , 2003, SIAM J. Sci. Comput..

[14]  F. Alvarado,et al.  Computation of closest bifurcations in power systems , 1994 .

[15]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[16]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[17]  C. K. Michael Tse,et al.  Slow-Scale Instability of Single-Stage Power-Factor-Correction Power Supplies , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Liqun Qi,et al.  Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations , 2004 .

[19]  Masao Fukushima,et al.  Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions , 2002, Optim. Methods Softw..

[20]  Defeng Sun,et al.  A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix , 2006, SIAM J. Matrix Anal. Appl..

[21]  Carson W. Taylor,et al.  Definition and Classification of Power System Stability , 2004 .

[22]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[23]  Xiaojiao Tong,et al.  A smoothing projected Newton-type method for semismooth equations with bound constraints , 2005 .

[24]  L. Lu,et al.  Computing an optimum direction in control space to avoid stable node bifurcation and voltage collapse in electric power systems , 1992 .

[25]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..

[26]  Xiaoqi Yang,et al.  Semismoothness of Spectral Functions , 2003, SIAM J. Matrix Anal. Appl..

[27]  A. S. Lewis,et al.  Derivatives of Spectral Functions , 1996, Math. Oper. Res..

[28]  I. Dobson An iterative method to compute a closest saddle node or Hopf bifurcation instability in multidimensional parameter space , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[29]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[30]  C. T. Kelley,et al.  Pseudo-Transient Continuation for Nonsmooth Nonlinear Equations , 2005, SIAM J. Numer. Anal..

[31]  C. Cañizares Calculating optimal system parameters to maximize the distance to saddle-node bifurcations , 1998 .

[32]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[33]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[34]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[35]  J. Pang,et al.  A Trust Region Method for Constrained Nonsmooth Equations , 1994 .

[36]  F. Milano,et al.  Sensitivity-based security-constrained OPF market clearing model , 2006, 2006 IEEE Power Engineering Society General Meeting.

[37]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[38]  Li-Zhi Liao,et al.  A Smoothing Newton Method for Extended Vertical Linear Complementarity Problems , 1999, SIAM J. Matrix Anal. Appl..

[39]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[40]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[41]  François Oustry,et al.  A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..

[42]  P. Kundur,et al.  Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions , 2004, IEEE Transactions on Power Systems.

[43]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[44]  Christian Kanzow,et al.  Strictly feasible equation-based methods for mixed complementarity problems , 2001, Numerische Mathematik.

[45]  R.M.M. Mattheij,et al.  On the solution of nonlinear two-point boundary value problems on successively refined grids☆ , 1985 .

[46]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[47]  C. K. Michael Tse,et al.  Slow-Scale Instability of Single-Stage Power-Factor-Correction Power Supplies , 2007, IEEE Trans. Circuits Syst. I Regul. Pap..

[48]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[49]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[50]  Hiroshi Kawakami,et al.  Bifurcation analysis of switched dynamical systems with periodically moving borders , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[51]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[52]  Kok Lay Teo,et al.  Smooth Convex Approximation to the Maximum Eigenvalue Function , 2004, J. Glob. Optim..