Efficient fully dynamic elimination forests with applications to detecting long paths and cycles

We present a data structure that in a dynamic graph of treedepth at most $d$, which is modified over time by edge insertions and deletions, maintains an optimum-height elimination forest. The data structure achieves worst-case update time $2^{{\cal O}(d^2)}$, which matches the best known parameter dependency in the running time of a static fpt algorithm for computing the treedepth of a graph. This improves a result of Dvořak et al. [ESA 2014], who for the same problem achieved update time $f(d)$ for some non-elementary (i.e. tower-exponential) function $f$. As a by-product, we improve known upper bounds on the sizes of minimal obstructions for having treedepth $d$ from doubly-exponential in $d$ to $d^{{\cal O}(d)}$. As applications, we design new fully dynamic parameterized data structures for detecting long paths and cycles in general graphs. More precisely, for a fixed parameter $k$ and a dynamic graph $G$, modified over time by edge insertions and deletions, our data structures maintain answers to the following queries: - Does $G$ contain a simple path on $k$ vertices? - Does $G$ contain a simple cycle on at least $k$ vertices? In the first case, the data structure achieves amortized update time $2^{{\cal O}(k^2)}$. In the second case, the amortized update time is $2^{{\cal O}(k^4)} + {\cal O}(k \log n)$. In both cases we assume access to a dictionary on the edges of $G$.

[1]  Christian Wulff-Nilsen Faster deterministic fully-dynamic graph connectivity , 2013, SODA 2013.

[2]  Dan E. Willard Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N) , 1983, Inf. Process. Lett..

[3]  Friedhelm Meyer auf der Heide,et al.  Dynamic perfect hashing: upper and lower bounds , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[4]  Hal A. Kierstead,et al.  Orderings on Graphs and Game Coloring Number , 2003, Order.

[5]  Monika Henzinger,et al.  New deterministic approximation algorithms for fully dynamic matching , 2016, STOC.

[6]  Meirav Zehavi A randomized algorithm for long directed cycle , 2016, Inf. Process. Lett..

[7]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[8]  Zdenek Dvorak,et al.  A Dynamic Data Structure for MSO Properties in Graphs with Bounded Tree-Depth , 2014, ESA.

[9]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[10]  Monika Henzinger,et al.  Randomized dynamic graph algorithms with polylogarithmic time per operation , 1995, STOC '95.

[11]  Zdenek Dvorak,et al.  A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs , 2012, WADS.

[12]  Monika Henzinger,et al.  Fully Dynamic Approximate Maximum Matching and Minimum Vertex Cover in O(log3 n) Worst Case Update Time , 2017, SODA.

[13]  Ken-ichi Kawarabayashi,et al.  A Polynomial Excluded-Minor Approximation of Treedepth , 2018, SODA.

[14]  Xuding Zhu,et al.  Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..

[15]  Rüdiger Reischuk,et al.  Dynamic Kernels for Hitting Sets and Set Packing , 2022, Algorithmica.

[16]  Erik D. Demaine,et al.  Lower bounds for dynamic connectivity , 2004, STOC '04.

[17]  Noga Alon,et al.  Color-coding , 1995, JACM.

[18]  Bruce M. Kapron,et al.  Dynamic graph connectivity in polylogarithmic worst case time , 2013, SODA.

[19]  Piotr Sankowski,et al.  Faster dynamic matchings and vertex connectivity , 2007, SODA '07.

[20]  Thatchaphol Saranurak,et al.  Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time , 2017, STOC.

[21]  Christian Wulff-Nilsen,et al.  Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Update Time , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[22]  Stephan Kreutzer,et al.  Coloring and Covering Nowhere Dense Graphs , 2018, SIAM J. Discret. Math..

[23]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[24]  Greg N. Frederickson Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..

[25]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Marcin Pilipczuk,et al.  Improved bounds for the excluded-minor approximation of treedepth , 2019, ESA.

[27]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[28]  M. Thorup,et al.  Faster Worst Case Deterministic Dynamic Connectivity , 2015, ESA.

[29]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[30]  Andreas Björklund,et al.  Narrow sieves for parameterized paths and packings , 2010, J. Comput. Syst. Sci..

[31]  Yoichi Iwata,et al.  Fast Dynamic Graph Algorithms for Parameterized Problems , 2014, SWAT.

[32]  Dimitrios M. Thilikos,et al.  Forbidden graphs for tree-depth , 2012, Eur. J. Comb..

[33]  Thomas Schwentick,et al.  Dynamic Complexity Meets Parameterised Algorithms , 2019, CSL.

[34]  Michael Elberfeld,et al.  Where First-Order and Monadic Second-Order Logic Coincide , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[35]  Gerth Stølting Brodal,et al.  Dynamic Representation of Sparse Graphs , 1999, WADS.

[36]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[37]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[38]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2004, JACM.

[39]  Peter Rossmanith,et al.  A Faster Parameterized Algorithm for Treedepth , 2014, ICALP.

[40]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[41]  Mikkel Thorup,et al.  Maintaining information in fully dynamic trees with top trees , 2003, TALG.

[42]  Mikkel Thorup,et al.  Minimizing Diameters of Dynamic Trees , 1997, ICALP.

[43]  Ittai Abraham,et al.  Fully dynamic all-pairs shortest paths with worst-case update-time revisited , 2016, SODA.

[44]  Gabriele Puppis,et al.  The monitoring problem for timed automata , 2020, ArXiv.

[45]  Matthias Mnich,et al.  Dynamic Parameterized Problems and Algorithms , 2017, ICALP.

[46]  Jacob Holm,et al.  Fully-dynamic planarity testing in polylogarithmic time , 2020, STOC.

[47]  Mikkel Thorup,et al.  Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.

[48]  Tsvi Kopelowitz,et al.  Fully Dynamic Connectivity in O(log n(log log n)2) Amortized Expected Time , 2016, SODA.

[49]  Christian Wulff-Nilsen,et al.  Fully-dynamic minimum spanning forest with improved worst-case update time , 2016, STOC.

[50]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.