Efficient fully dynamic elimination forests with applications to detecting long paths and cycles
暂无分享,去创建一个
Marcin Pilipczuk | Yann Disser | Danny Hermelin | Jiehua Chen | Manuel Sorge | Andreas Emil Feldmann | Wojciech Nadara | Michal Pilipczuk | Wojciech Czerwi'nski | Bartlomiej Wr'oblewski | Anna Zych-Pawlewicz | D. Hermelin | Manuel Sorge | Marcin Pilipczuk | Y. Disser | Jiehua Chen | Michal Pilipczuk | Bartlomiej Wr'oblewski | Wojciech Czerwi'nski | Wojciech Nadara | A. Feldmann | Anna Zych-Pawlewicz
[1] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity , 2013, SODA 2013.
[2] Dan E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N) , 1983, Inf. Process. Lett..
[3] Friedhelm Meyer auf der Heide,et al. Dynamic perfect hashing: upper and lower bounds , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[4] Hal A. Kierstead,et al. Orderings on Graphs and Game Coloring Number , 2003, Order.
[5] Monika Henzinger,et al. New deterministic approximation algorithms for fully dynamic matching , 2016, STOC.
[6] Meirav Zehavi. A randomized algorithm for long directed cycle , 2016, Inf. Process. Lett..
[7] Greg N. Frederickson,et al. Data structures for on-line updating of minimum spanning trees , 1983, STOC.
[8] Zdenek Dvorak,et al. A Dynamic Data Structure for MSO Properties in Graphs with Bounded Tree-Depth , 2014, ESA.
[9] Ioannis Koutis,et al. Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.
[10] Monika Henzinger,et al. Randomized dynamic graph algorithms with polylogarithmic time per operation , 1995, STOC '95.
[11] Zdenek Dvorak,et al. A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs , 2012, WADS.
[12] Monika Henzinger,et al. Fully Dynamic Approximate Maximum Matching and Minimum Vertex Cover in O(log3 n) Worst Case Update Time , 2017, SODA.
[13] Ken-ichi Kawarabayashi,et al. A Polynomial Excluded-Minor Approximation of Treedepth , 2018, SODA.
[14] Xuding Zhu,et al. Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..
[15] Rüdiger Reischuk,et al. Dynamic Kernels for Hitting Sets and Set Packing , 2022, Algorithmica.
[16] Erik D. Demaine,et al. Lower bounds for dynamic connectivity , 2004, STOC '04.
[17] Noga Alon,et al. Color-coding , 1995, JACM.
[18] Bruce M. Kapron,et al. Dynamic graph connectivity in polylogarithmic worst case time , 2013, SODA.
[19] Piotr Sankowski,et al. Faster dynamic matchings and vertex connectivity , 2007, SODA '07.
[20] Thatchaphol Saranurak,et al. Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time , 2017, STOC.
[21] Christian Wulff-Nilsen,et al. Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Update Time , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[22] Stephan Kreutzer,et al. Coloring and Covering Nowhere Dense Graphs , 2018, SIAM J. Discret. Math..
[23] János Komlós,et al. Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[24] Greg N. Frederickson. Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..
[25] Dimitrios M. Thilikos,et al. (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[26] Marcin Pilipczuk,et al. Improved bounds for the excluded-minor approximation of treedepth , 2019, ESA.
[27] Mikkel Thorup,et al. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.
[28] M. Thorup,et al. Faster Worst Case Deterministic Dynamic Connectivity , 2015, ESA.
[29] Mihai Patrascu,et al. Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.
[30] Andreas Björklund,et al. Narrow sieves for parameterized paths and packings , 2010, J. Comput. Syst. Sci..
[31] Yoichi Iwata,et al. Fast Dynamic Graph Algorithms for Parameterized Problems , 2014, SWAT.
[32] Dimitrios M. Thilikos,et al. Forbidden graphs for tree-depth , 2012, Eur. J. Comb..
[33] Thomas Schwentick,et al. Dynamic Complexity Meets Parameterised Algorithms , 2019, CSL.
[34] Michael Elberfeld,et al. Where First-Order and Monadic Second-Order Logic Coincide , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[35] Gerth Stølting Brodal,et al. Dynamic Representation of Sparse Graphs , 1999, WADS.
[36] Amir Abboud,et al. Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[37] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[38] Giuseppe F. Italiano,et al. A new approach to dynamic all pairs shortest paths , 2004, JACM.
[39] Peter Rossmanith,et al. A Faster Parameterized Algorithm for Treedepth , 2014, ICALP.
[40] Ryan Williams,et al. Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..
[41] Mikkel Thorup,et al. Maintaining information in fully dynamic trees with top trees , 2003, TALG.
[42] Mikkel Thorup,et al. Minimizing Diameters of Dynamic Trees , 1997, ICALP.
[43] Ittai Abraham,et al. Fully dynamic all-pairs shortest paths with worst-case update-time revisited , 2016, SODA.
[44] Gabriele Puppis,et al. The monitoring problem for timed automata , 2020, ArXiv.
[45] Matthias Mnich,et al. Dynamic Parameterized Problems and Algorithms , 2017, ICALP.
[46] Jacob Holm,et al. Fully-dynamic planarity testing in polylogarithmic time , 2020, STOC.
[47] Mikkel Thorup,et al. Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.
[48] Tsvi Kopelowitz,et al. Fully Dynamic Connectivity in O(log n(log log n)2) Amortized Expected Time , 2016, SODA.
[49] Christian Wulff-Nilsen,et al. Fully-dynamic minimum spanning forest with improved worst-case update time , 2016, STOC.
[50] Michal Pilipczuk,et al. Parameterized Algorithms , 2015, Springer International Publishing.