Multiple instance learning tracking method with local sparse representation

When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others.

[1]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  D. Zhang,et al.  Robust mean-shift tracking with corrected background-weighted histogram , 2012 .

[3]  Gérard G. Medioni,et al.  Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers , 2008, ECCV.

[4]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Yasushi Yagi,et al.  Integrating Color and Shape-Texture Features for Adaptive Real-Time Object Tracking , 2008, IEEE Transactions on Image Processing.

[8]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[10]  Wen Gao,et al.  Online selecting discriminative tracking features using particle filter , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[12]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  D. Zhang,et al.  Scale and orientation adaptive mean shift tracking , 2012 .

[14]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Shai Avidan Ensemble Tracking , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[17]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[18]  Yixin Chen,et al.  MILES: Multiple-Instance Learning via Embedded Instance Selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[20]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[21]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[23]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[24]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[26]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[27]  Baochang Zhang,et al.  Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR) , 2011, Pattern Recognit..

[28]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[31]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[32]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[34]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Qixiang Ye,et al.  Online feature evaluation for object tracking using Kalman Filter , 2008, 2008 19th International Conference on Pattern Recognition.

[36]  Qixiang Ye,et al.  Feature evaluation by particle filter for adaptive object tracking , 2009, Electronic Imaging.

[37]  Huchuan Lu,et al.  Online multiple support instance tracking , 2011, Face and Gesture 2011.

[38]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[39]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.