Graph-Theoretic Characterization of bifurcation Phenomena in Electrical Circuit Dynamics

This paper addresses bifurcation properties of equilibria in lumped electrical circuits. The goal is to tackle these properties in circuit-theoretic terms, characterizing the bifurcation conditions...

[1]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[2]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[3]  Leon O. Chua,et al.  Impasse points. Part II: Analytical aspects , 1989 .

[4]  R. E. Beardmore,et al.  The Singularity-Induced Bifurcation and its Kronecker Normal Form , 2001, SIAM J. Matrix Anal. Appl..

[5]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[6]  An-Chang Deng,et al.  Impasse points. Part I: Numerical aspects , 1989 .

[7]  Chika O. Nwankpa,et al.  Computation of singular and singularity induced bifurcation points of differential-algebraic power system model , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Satoru Iwata,et al.  Index characterization of differential–algebraic equations in hybrid analysis for circuit simulation , 2010 .

[9]  Yang Lijun,et al.  An improved version of the singularity-induced bifurcation theorem , 2001 .

[10]  Federico Bizzarri,et al.  Two-Dimensional bifurcation Diagrams of a Chaotic Circuit Based on Hysteresis , 2002, Int. J. Bifurc. Chaos.

[11]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[12]  Alejandro J. Rodríguez-Luis,et al.  A bifurcation analysis of a simple electronic circuit , 2005 .

[13]  W. Rheinboldt,et al.  Theoretical and numerical analysis of differential-algebraic equations , 2002 .

[14]  H. Watanabe,et al.  State-Variable Analysis of RLC Networks Containing Nonlinear Coupling Elements , 1969 .

[15]  Caren Tischendorf,et al.  Topological index‐calculation of DAEs in circuit simulation , 1998 .

[16]  Ricardo Riaza,et al.  Non‐linear circuit modelling via nodal methods , 2005, Int. J. Circuit Theory Appl..

[17]  Ricardo Riaza,et al.  Singular bifurcations in higher index differential-algebraic equations , 2002 .

[18]  T. Bashkow,et al.  The A Matrix, New Network Description , 1957 .

[19]  Ricardo Riaza,et al.  Tree-based characterization of low index circuit configurations without passivity restrictions , 2008 .

[20]  Ricardo Riaza,et al.  Stability Loss in Quasilinear DAEs by Divergence of a Pencil Eigenvalue , 2010, SIAM J. Math. Anal..

[21]  Ricardo Riaza Singularity-induced bifurcations in lumped circuits , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[23]  Leon O. Chua,et al.  The colored branch theorem and its applications in circuit theory , 1980 .

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  Ricardo Riaza On the singularity-induced bifurcation theorem , 2002, IEEE Trans. Autom. Control..

[26]  Leon O. Chua,et al.  Graph-theoretic properties of dynamic nonlinear networks , 1976 .

[27]  W. Marszalek,et al.  Singularity-induced bifurcations in electrical power systems , 2005, IEEE Transactions on Power Systems.

[28]  R. E. Beardmore,et al.  Stability and bifurcation properties of index-1 DAEs , 1998, Numerical Algorithms.

[29]  Marc Fosseprez,et al.  Non-linear Circuits: Qualitative Analysis of Non-linear, Non-reciprocal Circuits , 1992 .

[30]  B. C. Haggman,et al.  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part I: Conservation laws , 1986 .

[31]  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part II: Symmetries , 1986 .

[32]  Federico Bizzarri,et al.  Basic bifurcation analysis of a hysteresis oscillator , 2001, Int. J. Circuit Theory Appl..

[33]  L. Chua,et al.  On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks , 1979 .