Environmental Exposure Assessment

[1]  D. Versteeg,et al.  An environmental risk assessment for DTDMAC in The Netherlands , 1992 .

[2]  Konrad Hungerbühler,et al.  Fate modelling within LCA , 2000 .

[3]  T. E. McKone,et al.  CalTOX (registered trademark), A multimedia total exposure model spreadsheet user's guide. Version 4.0(Beta) , 2002 .

[4]  Michael Matthies,et al.  Comparing estimates of persistence and long-range transport potential among multimedia models. , 2005, Environmental science & technology.

[5]  M Matthies,et al.  Georeferenced regional simulation and aquatic exposure assessment. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[6]  W. Shiu,et al.  Generic models for evaluating the regional fate of chemicals , 1992 .

[7]  Frank Wania,et al.  Evaluating environmental persistence , 1998 .

[8]  Alex E. S. Green,et al.  Analytic Extensions of the Gaussian Plume Model , 1980 .

[9]  David S. Brown,et al.  Conducting Field Studies for Testing Pesticide Leaching Models , 1990 .

[10]  G. H. Jirka,et al.  CORMIX1: an expert system for mixing-zone analysis of toxic and conventional, single-port aquatic discharges , 1988 .

[11]  M. Klein Application and validation of pesticide leaching models , 1991 .

[12]  Michael Matthies,et al.  Chemodynamics and Environmental Modeling: An Introduction , 1997 .

[13]  R. Frische,et al.  The Environmental Model Segment Approach for estimating potential environmental concentrations. I. The model. , 1984, Ecotoxicology and environmental safety.

[14]  M. Bonazountas,et al.  SESOIL: A Seasonal Soil Compartment Model , 1984 .

[15]  C. E. Cowan,et al.  The Multi-Media Fate Model: A Vital Tool for Predicting the Fate of Chemicals, , 1995 .

[16]  Michael Matthies,et al.  Chemodynamics and Environmental Modeling , 1998 .

[17]  D. Mackay,et al.  Evaluating the environmental behavior of chemicals with a level III fugacity model , 1985 .

[18]  P. Doelman,et al.  Chemical time bombs: predicting the unpredictable , 1991 .

[19]  R. A. Rapaport,et al.  Prediction of consumer product chemical concentrations as a function of publicly owned treatment works treatment type and riverine dilution , 1988 .

[20]  W. Neely The definition and use of mixing zones. , 1982, Environmental science & technology.

[21]  D Mackay,et al.  BETR North America: A regionally segmented multimedia contaminant fate model for North America , 2001, Environmental science and pollution research international.

[22]  W. B. Nixon,et al.  Comparison of pesticide root zone model predictions with observed concentrations for the tobacco pesticide metalaxyl in unsaturated zone soils , 1986 .

[23]  O. Jolliet,et al.  Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. , 2005, Environmental science & technology.

[24]  H. Fischer Mixing in Inland and Coastal Waters , 1979 .

[25]  D. Mackay,et al.  Finding fugacity feasible , 1979 .

[26]  D. Mackay,et al.  Application of the QWASI (Quantitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes , 1989 .

[27]  K Hungerbühler,et al.  Influence of vegetation on the environmental partitioning of DDT in two global multimedia models. , 2004, Environmental science & technology.

[28]  Martin Scheringer,et al.  Persistence and Spatial Range as Endpoints of an Exposure-Based Assessment of Organic Chemicals , 1996 .

[29]  D Mackay,et al.  BETR-World: a geographically explicit model of chemical fate: application to transport of alpha-HCH to the Arctic. , 2004, Environmental pollution.

[30]  J. Seinfeld Atmospheric Chemistry and Physics of Air Pollution , 1986 .

[31]  D. van de Meent,et al.  A spreadsheet-based box model to predict the fate of xenobiotics in a municipal wastewater treatment plant , 1991 .

[32]  F. Gifford,et al.  Use of routine meteorological observations for estimating atmospheric dispersion , 1961 .

[33]  S. E. Jørgensen,et al.  Mathematical submodels in water quality systems , 1989 .

[34]  Jaarsveld Ja van An Operational atmospheric transport model for Priority Substances; specification and instructions for use , 1990 .

[35]  Brandes Lj,et al.  SimpleBox 2.0: a nested multimedia fate model forevaluating the environmental fate of chemicals , 1996 .

[36]  Meent D van de SIMPLEBOX: a generic multimedia fate evaluationmodel , 1993 .

[37]  Tom C. J. Feijtel,et al.  Development of a geography-referenced regional exposure assessment tool for European rivers - great-er contribution to great-er #1 , 1997 .

[38]  Tom C. J. Feijtel,et al.  Development of a geography-referenced regional exposure assessment tool for European rivers—GREAT-ER , 1998 .

[39]  Antonio Di Guardo,et al.  Evaluating the environmental fate of a variety of types of chemicals using the EQC model , 1996 .

[40]  M. Matthies,et al.  Pesticide transport modelling in soil for risk assessment of groundwater contamination , 1991 .

[41]  Antonio Di Guardo,et al.  Regional differences in chemical fate model outcome. , 2004, Chemosphere.

[42]  Michael Matthies,et al.  Application of multimedia models for screening assessment of long-range transport potential and overall persistence. , 2006, Environmental science & technology.

[43]  T. McKone,et al.  Persistence and transport potential of chemicals in a multimedia environment , 2000 .

[44]  M. Scheringer New Ethical and Scientific Concepts for Risk Assessment , 2002 .

[45]  T. Nijs,et al.  Ecotoxicological risk evaluation of the cationic fabric softener DTDMAC II. Exposure modelling , 1992 .

[46]  J. Cairns,et al.  Modeling the fate of chemicals in the aquatic environment , 1982 .

[47]  G. Csanady Turbulent Diffusion in the Environment , 1973 .