Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites

Nanomechanical properties of single-walled carbon nanotube (SWNT) reinforced epoxy composites with varying weight percentage (0, 1, 3, and 5 wt%) of nanotubes were measured by nanoindentation and nanoscratch techniques. Hardness and elastic modulus were measured using a nanoindenter. Scratch resistance and scratch damage were studied using the AFM tip sliding against the SWNT reinforced sample surfaces. Nanoindentation/nanoscratch deformation and fracture behaviour was studied by in situ imaging of the indentation impressions/scratch tracks. Viscoelastic properties of the nanocomposites were measured using nanoindentation dynamic mechanical analysis tests. The reinforcing mechanisms are discussed with reference to the nanotube dispersion, interfacial bonding, and load transfer in the SWNT reinforced polymer composites.

[1]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[2]  D. Penumadu,et al.  Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites , 2004 .

[3]  Jiang Zhu,et al.  Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization , 2003 .

[4]  Maurizio Prato,et al.  Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites , 2002, Nature materials.

[5]  Rodney Andrews,et al.  Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing , 2002 .

[6]  Robert C. Haddon,et al.  Nanotube composite carbon fibers , 1999 .

[7]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[8]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[9]  Rodney S. Ruoff,et al.  Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes , 2000 .

[10]  W Benoit,et al.  Reinforcement of single-walled carbon nanotube bundles by intertube bridging , 2004, Nature materials.

[11]  J. Kenny,et al.  Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites , 2003 .

[12]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[13]  D. Colbert,et al.  Dissolution of Full-Length Single-Walled Carbon Nanotubes , 2001 .

[14]  K. G. Ong,et al.  Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes , 2001 .

[15]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[16]  Zhi‐Xin Guo,et al.  Large-Scale Preparation of Solubilized Carbon Nanotubes , 2003 .

[17]  J. Tour,et al.  Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions , 2003 .

[18]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[19]  A. Yamada,et al.  Purification and alignment of arc-synthesis single-walled carbon nanotube bundles , 2002 .

[20]  P. Ajayan,et al.  Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. , 2003, Journal of the American Chemical Society.

[21]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[22]  D. Young,et al.  Microstructure of HK40 alloy after high temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack , 2002 .

[23]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[24]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[25]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[26]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[27]  J. Nagy,et al.  Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites , 2002 .

[28]  Jun Liu,et al.  Surfactant-assisted processing of carbon nanotube/polymer composites , 2000 .

[29]  G. Pharr,et al.  Mechanical properties of blended single-wall carbon nanotube composites , 2003 .

[30]  J. Tour,et al.  Synthesis of Gram Quantities of Cc0 by Plasma Discharge in a Modified Round-Bottomed Flask. Key Parameters for Yield Optimization and Purification , 2001 .

[31]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[32]  D. Qian,et al.  In‐situ transmission electron microscopy studies of polymer–carbon nanotube composite deformation , 2001, Journal of microscopy.

[33]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[34]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[35]  Bharat Bhushan,et al.  Nanomechanical characterisation of solid surfaces and thin films , 2003 .

[36]  Zhi‐Xin Guo,et al.  PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer , 2003 .

[37]  J. Tour,et al.  Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds , 2001 .

[38]  P. Watts,et al.  A low resistance boron-doped carbon nanotube–polystyrene composite , 2001 .

[39]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[40]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.