Multiwavelet density estimation

Accurate density estimation methodologies play an integral role in a variety of scientific disciplines with applications including simulation models, decision support tools, and exploratory data analysis. In the past, histograms and kernel density estimators have been the predominant tools of choice, primarily due to their ease of use and mathematical simplicity. More recently, the use of wavelets for density estimation has gained in popularity due to their ability to approximate a large class of functions, including those with localized, abrupt variations. However, a well-known attribute of wavelet bases is that they cannot be simultaneously symmetric, orthogonal, and compactly supported. Multiwavelets-more general, vector-valued constructions of wavelets-overcome this disadvantage, making them natural choices for estimating density functions, many of which exhibit local symmetries around features such as a mode. We extend the methodology of wavelet density estimation to use multiwavelet bases and illustrate several empirical examples of multiwavelet density estimation.

[2]  R. Kronmal,et al.  The Estimation of Probability Densities and Cumulatives by Fourier Series Methods , 1968 .

[3]  Continuous non-negative wavelets and their use in density estimation , 1999 .

[4]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[5]  Zhengxing Cheng,et al.  An algorithm for constructing symmetric orthogonal multiwavelets by matrix symmetric extension , 2004, Appl. Math. Comput..

[6]  Ivan W. Selesnick,et al.  Multiwavelet bases with extra approximation properties , 1998, IEEE Trans. Signal Process..

[7]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[8]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[9]  Rui J. P. de Figueiredo,et al.  An Adaptive Orthogonal-Series Estimator for Probability Density Functions , 1978 .

[10]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[11]  S. Schwartz Estimation of Probability Density by an Orthogonal Series , 1967 .

[12]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[13]  T. R. Downie,et al.  The discrete multiple wavelet transform and thresholding methods , 1998, IEEE Trans. Signal Process..

[14]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[15]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[16]  Hongyong Wang,et al.  High-order balanced multiwavelets with dilation factor a , 2006, Appl. Math. Comput..

[17]  Peter Hall,et al.  On the rate of convergence of orthogonal series density estimators , 1986 .

[18]  Martin Vetterli,et al.  High-order balanced multiwavelets: theory, factorization, and design , 2001, IEEE Trans. Signal Process..

[19]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[20]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[21]  Geoffrey S. Watson,et al.  Density Estimation by Orthogonal Series , 1969 .

[22]  A. Izenman Review Papers: Recent Developments in Nonparametric Density Estimation , 1991 .

[23]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[24]  Martin Vetterli,et al.  Balanced multiwavelets , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[25]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB, Second Edition (Chapman & Hall/Crc Computer Science & Data Analysis) , 2007 .

[26]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[27]  Edward J. Wegman,et al.  Nonparametric density estimation of streaming data using orthogonal series , 2009, Comput. Stat. Data Anal..

[28]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[29]  Silvia Bacchelli,et al.  Matrix Thresholding for Multiwavelet Image Denoising , 2003, Numerical Algorithms.

[30]  Min Jiang,et al.  Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection , 2011 .

[31]  Fritz Keinert,et al.  Wavelets and Multiwavelets , 2003 .

[32]  V. Strela Multiwavelets--theory and applications , 1996 .

[33]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[34]  Lesław Gajek,et al.  On Improving Density Estimators which are not Bona Fide Functions , 1986 .

[35]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[36]  Y. Cen,et al.  Explicit construction of high-pass filter sequence for orthogonal multiwavelets , 2009, Appl. Math. Comput..

[37]  Jo Yew Tham,et al.  Some properties of symmetric-antisymmetric orthonormal multiwavelets , 2000, IEEE Trans. Signal Process..

[38]  Martin Vetterli,et al.  Balanced multiwavelets theory and design , 1998, IEEE Trans. Signal Process..

[39]  Brani Vidakovic,et al.  Estimating the square root of a density via compactly supported wavelets , 1997 .

[40]  I. Ahmad Integrated mean square properties of density estimation by orthogonal series methods for dependent variables , 1982 .

[41]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[42]  Zheng-xing Cheng,et al.  A method of construction for biorthogonal multiwavelets system with 2r multiplicity , 2005, Appl. Math. Comput..

[43]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[44]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[45]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[46]  Rachid Deriche,et al.  A Riemannian Framework for Orientation Distribution Function Computing , 2009, MICCAI.

[47]  Anand Rangarajan,et al.  Maximum Likelihood Wavelet Density Estimation With Applications to Image and Shape Matching , 2008, IEEE Transactions on Image Processing.

[48]  Daniel Rueckert,et al.  Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.

[49]  Peter N. Heller,et al.  The application of multiwavelet filterbanks to image processing , 1999, IEEE Trans. Image Process..