White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 2: Liver and Other Applications in Oncology White Paper: Interventionelle MRT: Status Quo und Entwicklungspotenzial unter ökonomischen Perspektiven, Teil 2: Therapeutische und onkolo

Background MRI is attractive for guiding and monitoring interventional procedures due to its high intrinsic soft tissue contrast and the possibility to measure flow and cardiac function. Methods Technical solutions have been developed for all procedural steps including imaging guidance, MR-safe catheters and instruments and patient monitoring. This has led to widening of the clinical applications. Interventional MRI is becoming increasingly important for the treatment of patients suffering from malignant diseases. The detectability of masses and consequently their accessibility for biopsy is higher, compared to other modalities, due to the high intrinsic soft tissue contrast of MRI. Temperature-dependent sequences allow for minimally invasive and tissue-sparing ablation (A-0 ablation). Conclusion Interventional MRI has become established in the clinical routine for a variety of indications, including biopsies and tumor ablation. Since the economic requirement of covering costs by reimbursement is met and interventional MRI decreases the mortality and morbidity of interventional procedures, broader application of interventional MRI can be expected in the clinical routine in the future. Key points  · Particularly for the treatment of oncological patients, interventional MRI is superior to other methods with respect to minimal invasiveness and tissue protection due to the ability to exactly determine tumor borders and to visualize and control the size of the ablation area on the basis of MR temperature measurement.. · Due to the better visualization of targets and the effects of ablation in tissue, interventional MRI can lower the mortality and morbidity associated with these interventions for many indications.. · The complex comparison of costs and reimbursement shows that this application can be performed in a cost-covering manner and broader application can be expected in the future.. Citation Format · Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 2: Liver and Other Applications in Oncology. Fortschr Röntgenstr 2017; 189: 1047 - 1054.

[1]  Joachim Hornegger,et al.  Rapid freehand MR‐guided percutaneous needle interventions: An image‐based approach to improve workflow and feasibility , 2013, Journal of magnetic resonance imaging : JMRI.

[2]  Frank Sauer,et al.  An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. , 2006, Radiology.

[3]  F. Wacker,et al.  MR imaging-guided biliary drainage in an open low-field system: first clinical experiences. , 2000, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[4]  J. Ricke,et al.  Einlage einer perkutanen Nephrostomie im offenen Magnetresonanztomographen , 2012, Der Urologe.

[5]  S. Morikawa,et al.  MRI-Guided Microwave Ablation , 2011 .

[6]  C Catalano,et al.  MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. , 2014, The Journal of bone and joint surgery. American volume.

[7]  S. Zangos,et al.  [Percutaneous thermoablation of pulmonary metastases. Experience with the application of laser-induced thermotherapy (LITT) and radiofrequency ablation (RFA), and a literature review]. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[8]  Ioannis Seimenis,et al.  A novel, general‐purpose, MR‐compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance , 2014, The international journal of medical robotics + computer assisted surgery : MRCAS.

[9]  Aaron Fenster,et al.  Mechatronic system for in‐bore MRI‐guided insertion of needles to the prostate: An in vivo needle guidance accuracy study , 2015, Journal of magnetic resonance imaging : JMRI.

[10]  A. Napoli,et al.  International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions , 2015, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[11]  S. Zangos,et al.  Thermal ablation therapies in patients with breast cancer liver metastases: A review , 2013, European Radiology.

[12]  Frank Fischbach,et al.  MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients , 2011, CardioVascular and Interventional Radiology.

[13]  Stefan Maderwald,et al.  MR-guided liver biopsy within a short, wide-bore 1.5 Tesla MR system , 2008, European Radiology.

[14]  T. Vogl,et al.  Magnetic resonance temperature imaging of laser-induced thermotherapy: assessment of fast sequences in ex vivo porcine liver. , 2013, Future oncology.

[15]  M. Mack,et al.  Roboterunterstützte Punktion in einem Hochfeld-Kernspintomografen – erste klinische Ergebnisse , 2012 .

[16]  J. Lewin,et al.  Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis , 2011, European Radiology.

[17]  J. Barkhausen,et al.  MR-guided HIFU treatment of symptomatic uterine fibroids using novel feedback-regulated volumetric ablation: effectiveness and clinical practice. , 2013, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[18]  Thomas J. Vogl,et al.  Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies , 2014, La radiologia medica.

[19]  Fritz Schick,et al.  Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. , 2010, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[20]  Gabor Fichtinger,et al.  Augmented Reality Visualization Using Image Overlay Technology for MR-Guided Interventions: Cadaveric Bone Biopsy at 1.5 T , 2013, Investigative radiology.

[21]  Laura Curiel,et al.  High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. , 2014, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[22]  A. Gangi,et al.  Percutaneous MR-guided cryoablation of prostate cancer: initial experience , 2012, European Radiology.

[23]  Nobuhiko Hata,et al.  Preliminary clinical experiences of a motorized manipulator for magnetic resonance image-guided microwave coagulation therapy of liver tumors. , 2009, American journal of surgery.

[24]  F. Schick,et al.  A pilot study for clinical feasibility of the near-harmonic 2D referenceless PRFS thermometry in liver under free breathing using MR-guided LITT ablation data , 2012, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[25]  Mark E Ladd,et al.  MR‐guided core biopsy with MR fluoroscopy using a short, wide‐bore 1.5‐Tesla scanner: Feasibility and initial results , 2008, Journal of magnetic resonance imaging : JMRI.

[26]  J. Trachtenberg,et al.  In-bore MRI interventions: current status and future applications , 2015, Current opinion in urology.

[27]  Nathan Lawrentschuk,et al.  The Role of Focal Therapy in the Management of Localised Prostate Cancer: A Systematic Review , 2014, European urology.

[28]  M. Reiser,et al.  Magnetic Resonance Imaging–Guided Focused Ultrasound Treatment of Symptomatic Uterine Fibroids: Impact of Technology Advancement on Ablation Volumes in 115 Patients , 2013, Investigative radiology.

[29]  J. Barkhausen,et al.  MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids. , 2012, Radiology.

[30]  Gabor Fichtinger,et al.  MRI image overlay: Application to arthrography needle insertion , 2007, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[31]  R. Weersink,et al.  Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. , 2010, European urology.

[32]  Katrin Hegenscheid,et al.  Magnetic resonance-guided upper abdominal biopsies in a high-field wide-bore 3-T MRI system: feasibility, handling, and needle artefacts , 2010, European Radiology.

[33]  J. Lewin,et al.  MR-guided percutaneous sclerotherapy of low-flow vascular malformations in the head and neck. , 2005, Magnetic resonance imaging clinics of North America.

[34]  J. Hand,et al.  High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. , 2013, The British journal of radiology.

[35]  F. Wacker,et al.  Improving laser-induced thermotherapy of liver metastases--effects of arterial microembolization and complete blood flow occlusion. , 2007, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[36]  C Czerny,et al.  [Robot-assisted biopsies in a high-field MRI system - first clinical results]. , 2012, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[37]  Aytekin Oto,et al.  MR imaging-guided focal laser ablation for prostate cancer: phase I trial. , 2013, Radiology.

[38]  S. Zangos,et al.  MR-compatible Assistance System for Biopsy in a High-Field-Strength System: Initial Results in Patients with Suspicious Prostate Lesions 1 , 2022 .

[39]  B. Hamm,et al.  Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features , 2010, European Radiology.

[40]  Petros Martirosian,et al.  Wide-bore 1.5 Tesla MR imagers for guidance and monitoring of radiofrequency ablation of renal cell carcinoma: initial experience on feasibility , 2008, European Radiology.

[41]  B. Adamietz,et al.  MRI-guided core biopsy of the prostate in the supine position—introduction of a simplified technique using large-bore magnet systems , 2013, European Radiology.

[42]  Kemal Tuncali,et al.  MRI‐guided cryotherapy , 2008, Journal of magnetic resonance imaging : JMRI.

[43]  T. H. van der Kwast,et al.  Focal magnetic resonance guided focused ultrasound for prostate cancer: Initial North American experience. , 2012, Canadian Urological Association journal = Journal de l'Association des urologues du Canada.

[44]  M. G. Mack,et al.  MR-guided laser-induced thermotherapy (LITT) of liver tumours: experimental and clinical data , 2004, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[45]  J. Felmlee,et al.  Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. , 2013, Urology.

[46]  Clifford R Weiss,et al.  MR‐guided biopsy: A review of current techniques and applications , 2008, Journal of magnetic resonance imaging : JMRI.

[47]  Carlo Catalano,et al.  Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience. , 2013, European urology.

[48]  Philippe L. Pereira,et al.  MR-guided radiofrequency ablation using a wide-bore 1.5-T MR system: clinical results of 213 treated liver lesions , 2012, European Radiology.

[49]  S. Zangos,et al.  MR-guided biopsies of lesions in the retroperitoneal space: technique and results , 2006, European Radiology.

[50]  F. Fischbach,et al.  [Placement of percutaneous nephrostomy by open magnetic resonance imaging: clinical results and current status in urology]. , 2012, Der Urologe. Ausg. A.

[51]  J. Bomers,et al.  MR imaging-guided focal cryoablation in patients with recurrent prostate cancer. , 2013, Radiology.

[52]  Rajiv Chopra,et al.  MR imaging-controlled transurethral ultrasound therapy for conformal treatment of prostate tissue: initial feasibility in humans. , 2012, Radiology.

[53]  C. Kuhl,et al.  White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 1: General Application White Paper: Interventionelle MRT: Status Quo und Entwicklungspotenzial unter ökonomischen Perspektiven, Teil 1: Generelle Anwendungen , 2017, RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[54]  Joachim Hornegger,et al.  Percutaneous punctures with MR imaging guidance: comparison between MR imaging-enhanced fluoroscopic guidance and real-time MR Imaging guidance. , 2013, Radiology.

[55]  Kimberly K Amrami,et al.  Magnetic resonance-guided focused ultrasound of uterine leiomyomas: review of a 12-month outcome of 130 clinical patients. , 2011, Journal of vascular and interventional radiology : JVIR.

[56]  C. Claussen,et al.  Management of breast lesions detectable only on MRI. , 2013, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[57]  E. McVeigh,et al.  MR‐guided sclerotherapy of low‐flow vascular malformations using T2‐weighted interrupted bSSFP (T2W‐iSSFP): Comparison of pulse sequences for visualization and needle guidance , 2015, Journal of magnetic resonance imaging : JMRI.

[58]  Jan Fritz,et al.  Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. , 2009, AJR. American journal of roentgenology.

[59]  S. Zangos,et al.  MR-guided biopsies with a newly designed cordless coil in an open low-field system: Initial findings , 2006, European Radiology.