Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor

The PARAFAC decomposition of a higher-order tensor is a powerful multilinear algebra tool that becomes more and more popular in a number of disciplines. Existing PARAFAC algorithms are computationally demanding and operate in batch mode - both serious drawbacks for on-line applications. When the data are serially acquired, or the underlying model changes with time, adaptive PARAFAC algorithms that can track the sought decomposition at low complexity would be highly desirable. This is a challenging task that has not been addressed in the literature, and the topic of this paper. Given an estimate of the PARAFAC decomposition of a tensor at instant t, we propose two adaptive algorithms to update the decomposition at instant t+1, the new tensor being obtained from the old one after appending a new slice in the 'time' dimension. The proposed algorithms can yield estimation performance that is very close to that obtained via repeated application of state-of-art batch algorithms, at orders of magnitude lower complexity. The effectiveness of the proposed algorithms is illustrated using a MIMO radar application (tracking of directions of arrival and directions of departure) as an example.

[1]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[2]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[3]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[4]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[5]  Jian Li,et al.  Adaptive Techniques for MIMO Radar , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[6]  Peter Strobach,et al.  Bi-iteration SVD subspace tracking algorithms , 1997, IEEE Trans. Signal Process..

[7]  A. V. D. Veen Algebraic methods for deterministic blind beamforming , 1998, Proc. IEEE.

[8]  Shan Ouyang,et al.  Bi-iterative least-square method for subspace tracking , 2005, IEEE Transactions on Signal Processing.

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[11]  Jun Li,et al.  Multitarget Identification and Localization Using Bistatic MIMO Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[12]  Marc Moonen,et al.  Subspace Methods for Multimicrophone Speech Dereverberation , 2003, EURASIP J. Adv. Signal Process..

[13]  Pierre Comon,et al.  Blind identification and source separation in 2×3 under-determined mixtures , 2004, IEEE Trans. Signal Process..

[14]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[15]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[16]  Lieven De Lathauwer,et al.  Blind Identification of Underdetermined Mixtures by Simultaneous Matrix Diagonalization , 2008, IEEE Transactions on Signal Processing.

[17]  J. Chisholm Approximation by Sequences of Padé Approximants in Regions of Meromorphy , 1966 .

[18]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[19]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[20]  R. Cattell “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .

[21]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[22]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[23]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[24]  Nikos D. Sidiropoulos,et al.  Blind Speech Separation Using Parafac Analysis and Integer Least Squares , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[25]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[26]  Sabine Süsstrunk,et al.  Higher Order SVD Analysis for Dynamic Texture Synthesis , 2008, IEEE Transactions on Image Processing.

[27]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[28]  Roland Badeau,et al.  Sliding window adaptive SVD algorithms , 2004, IEEE Transactions on Signal Processing.

[29]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[30]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[31]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[32]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[33]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[34]  Patrick Dupont,et al.  Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone , 2007, NeuroImage.

[35]  Demetri Terzopoulos,et al.  Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.

[36]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[37]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[38]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[39]  Jian Li,et al.  Radar imaging via adaptive MIMO techniques , 2006, 2006 14th European Signal Processing Conference.

[40]  Nikos D. Sidiropoulos,et al.  A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[41]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[42]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[43]  Bijan Afsari,et al.  Sensitivity Analysis for the Problem of Matrix Joint Diagonalization , 2008, SIAM J. Matrix Anal. Appl..

[44]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[45]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[46]  Maurice Clint,et al.  A Simultaneous Iteration Method for the Unsymmetric Eigenvalue Problem , 1971 .

[47]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..