Equilibrium subsets for multi-parametric structural analysis

The paper discusses multi-parametric formulations for structural equilibrium problems. By seeking subsets of equilibrium states, which also fulfil extra conditions, more detailed information on structural behaviour can be obtained. These conditions can be related to analyses of, e.g. critical behaviour, imperfections or optimisation. The paper shows a general problem setting and some interesting augmentations. A solution method for the special case of one-dimensional equilibrium subsets is described. The algorithm is a generalisation of a path-following algorithm, where new methods are developed for the evaluation of the path tangent, and for the isolation of special solution points. Examples are used to show the properties and the possibilities of the ideas.

[1]  A. Griewank,et al.  Characterization and Computation of Generalized Turning Points , 1984 .

[2]  Peter Wriggers,et al.  A quadratically convergent procedure for the calculation of stability points in finite element analysis , 1988 .

[3]  C. Pacoste,et al.  On parameter investigations of instabilities in reticulated space frames , 1993 .

[4]  Martti Mikkola,et al.  Tracing the Equilibrium Path beyond Compound Critical Points , 1999 .

[5]  Anders Eriksson,et al.  On linear constraints for Newton–Raphson corrections and critical point searches in structural F.E. problems , 1989 .

[6]  W. Rheinboldt,et al.  On the computation of manifolds of foldpoints for parameter-dependent problems , 1990 .

[7]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[8]  Anders Eriksson,et al.  Element behavior in post-critical plane frame analysis , 1995 .

[9]  J. Pietrzak Vector optimization of structures prone to instability , 1992 .

[10]  A. Eriksson Derivatives of tangential stiffness matrices for equilibrium path descriptions , 1991 .

[11]  F. Rammerstorfer,et al.  Parameter Sensitivity of Nonlinear Structures Concerning Stability Limit , 1981 .

[12]  Tony F. Chan,et al.  Generalized deflated block-elimination , 1986 .

[13]  Walter D. Pilkey,et al.  State-of-the-art surveys on finite element technology , 1983 .

[14]  Anders Eriksson,et al.  Fold lines for sensitivity analyses in structural instability , 1994 .

[15]  G. Reddien,et al.  Characterization and computation of singular points with maximum rank deficiency , 1986 .

[16]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[17]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[18]  W. Rheinboldt Computation of Critical Boundaries on Equilibrium Manifolds , 1982 .

[19]  Anders Eriksson,et al.  On step size adjustments in structural continuation problems , 1995 .

[20]  M. J. Sewell On the connexion between stability and the shape of the equilibrium surface , 1966 .

[21]  René Thom,et al.  Structural stability and morphogenesis , 1977, Pattern Recognit..

[22]  P. G. Bergan,et al.  Solution algorithms for nonlinear structural problems , 1980 .

[23]  Allan D. Jepson,et al.  Folds in Solutions of Two Parameter Systems and Their Calculation. Part I , 1985 .

[24]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[25]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[26]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[27]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[28]  Erik Lund,et al.  A Method of “Exact” Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses* , 1993 .

[29]  M. A. Crisfield,et al.  NEW SOLUTION PROCEDURES FOR LINEAR AND NON-LINEAR FINITE ELEMENT ANALYSIS , 1985 .