In situ forming implants - an attractive formulation principle for parenteral depot formulations.

In the area of parenteral controlled release formulations, in situ forming implants (ISFI) are attractive alternatives to preformed implants and microparticles. ISFI avoid the use of large needles or microsurgery and they can be manufactured in simple steps with a low requirement of equipment and processes. They are injected as low viscous solutions and transform in the body to a gel or solid depot. Different triggers can be used to stimulate this transformation: (1) in situ cross-linking, (2) in situ solidifying organogels, and (3) in situ phase separation. The review discusses the principles and the pros and cons of each strategy. It also gives examples of clinically used products or systems which are currently in clinical trials. Although the principle of ISFI is so attractive, key issues remain to be solved. They include (i) variability of the implant shape and structure, (ii) avoidance of burst release during implant formation, and (iii) toxicity issues. Unfortunately, until now our knowledge concerning the detailed processes of the implant formation is still very limited. This is due to the fact that the processes of implant formation and degradation, drug release and tissue response are complex, heterogeneous, interconnected and not easy to follow, especially in vivo. Despite this statement, many efforts are made in industry and academia to improve current approaches. New materials and approaches enter the preclinical and clinical phases and one can be sure, that ISFI will gain further clinical importance within the next years.

[1]  You Han Bae,et al.  Polymer Architecture and Drug Delivery , 2006, Pharmaceutical Research.

[2]  J. Siepmann,et al.  Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. , 2011, International journal of pharmaceutics.

[3]  F. Ganji,et al.  Gelation time and degradation rate of chitosan-based injectable hydrogel , 2007 .

[4]  J. Leroux,et al.  Chitosan : A natural polycation with multiple applications , 2006 .

[5]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[6]  A. Goepferich,et al.  Poly(ethyleneglycol) 500 Dimethylether as Novel Solvent for Injectable In Situ Forming Depots , 2009, Pharmaceutical Research.

[7]  M. Jasionowski,et al.  Injectable gels for tissue engineering , 2001, The Anatomical record.

[8]  A. Goepferich,et al.  Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability. , 2009, International journal of pharmaceutics.

[9]  Qiang Zhang,et al.  Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic F127 hydrogel for subcutaneous administration: In vitro and in vivo characterization. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[10]  J. A. Hubbell,et al.  Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. , 1994, Journal of biomedical materials research.

[11]  Anna Gutowska,et al.  Biodegradable thermoreversible gelling PLGA-g-PEG copolymers , 2001 .

[12]  H. Metz,et al.  Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[13]  K. Peck,et al.  Development of an in situ forming biodegradable poly-lactide-coglycolide system for the controlled release of proteins , 1995 .

[14]  P. Roughley,et al.  The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. , 2006, Biomaterials.

[15]  D. Steinberg,et al.  Dental drug-delivery devices: local and sustained-release applications. , 1999, Critical reviews in therapeutic drug carrier systems.

[16]  A. Domb,et al.  Chitosan chemistry and pharmaceutical perspectives. , 2004, Chemical reviews.

[17]  R. Gurny,et al.  A novel thermoresponsive hydrogel based on chitosan. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[18]  A. Bernkop‐Schnürch,et al.  Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. , 2003, Journal of pharmaceutical sciences.

[19]  Vladimir P Torchilin,et al.  Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. , 2004, Advanced drug delivery reviews.

[20]  A. Bernkop‐Schnürch,et al.  Thiomers: potential excipients for non-invasive peptide delivery systems. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  Kinam Park,et al.  In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. , 2007, Biomacromolecules.

[22]  C. Curdy,et al.  Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a feasibility study. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  L. Vachoud,et al.  Study of a chitin-based gel as injectable material in periodontal surgery. , 2002, Biomaterials.

[24]  J. Siepmann,et al.  Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. , 2006, International journal of pharmaceutics.

[25]  R. Murthy,et al.  Chitosan-based thermosensitive hydrogel containing liposomes for sustained delivery of cytarabine. , 2009, Drug development and industrial pharmacy.

[26]  A. Jayakrishnan,et al.  Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. , 2005, Biomaterials.

[27]  Luis Solorio,et al.  Noninvasive characterization of in situ forming implants using diagnostic ultrasound. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[28]  J. D. de Bruijn,et al.  Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. , 2008, Journal of biomedical materials research. Part A.

[29]  A. Sawhney,et al.  Characterization of the formation of interfacially photopolymerized thin hydrogels in contact with arterial tissue. , 1996, Biomaterials.

[30]  K. Peh,et al.  Reporting degree of deacetylation values of chitosan: the influence of analytical methods. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[31]  K. Anseth,et al.  A review of photocrosslinked polyanhydrides: in situ forming degradable networks. , 2000, Biomaterials.

[32]  J. Leroux,et al.  Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. , 2000, International journal of pharmaceutics.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Charles H Tator,et al.  Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. , 2006, Biomaterials.

[36]  H. Lee,et al.  Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. , 2008, Tissue engineering. Part A.

[37]  M. Thanou,et al.  Biodegradation, biodistribution and toxicity of chitosan. , 2010, Advanced drug delivery reviews.

[38]  R. Bodmeier,et al.  Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[39]  R. V. Contri,et al.  Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[40]  K. Zhu,et al.  Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. , 2001, International journal of pharmaceutics.

[41]  J. Siepmann,et al.  PLGA-based drug delivery systems: importance of the type of drug and device geometry. , 2008, International journal of pharmaceutics.

[42]  R. Gurny,et al.  Poly(ortho esters) - their development and some recent applications. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[43]  A. G. Ding,et al.  Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. , 2006, Journal of the American Chemical Society.

[44]  Antonios G Mikos,et al.  Thermoresponsive hydrogels in biomedical applications. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[45]  Amarnath Sharma,et al.  Liposomes in drug delivery: Progress and limitations , 1997 .

[46]  A. Shukla,et al.  Controlled Release of a Contraceptive Steroid from Biodegradable and Injectable Gel Formulations: In Vitro Evaluation , 2004, Pharmaceutical Research.

[47]  K. Mäder,et al.  Characterizing molar mass distributions and molecule structures of different chitosans using asymmetrical flow field-flow fractionation combined with multi-angle light scattering. , 2008, International journal of pharmaceutics.

[48]  J. Leroux,et al.  Novel injectable neutral solutions of chitosan form biodegradable gels in situ. , 2000, Biomaterials.

[49]  Sanming Li,et al.  A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity. , 2011, International journal of pharmaceutics.

[50]  Timothy P. Lodge,et al.  Thermoreversible Gelation of Aqueous Methylcellulose Solutions , 1999 .

[51]  R. Bodmeier,et al.  Myotoxicity studies of O/W-in situ forming microparticle systems. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[52]  J. Mestecky,et al.  Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[53]  Anna Gutowska,et al.  Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. , 2002, Biomacromolecules.

[54]  Giyoong Tae,et al.  Formulation and in vitro characterization of an in situ gelable, photo-polymerizable Pluronic hydrogel suitable for injection. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[55]  N. Peppas,et al.  Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications , 2003 .

[56]  O. Katare,et al.  In situ forming implant for controlled delivery of an anti-HIV fusion inhibitor. , 2012, International journal of pharmaceutics.

[57]  O. Corrigan,et al.  Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. , 2006, International journal of pharmaceutics.

[58]  M. Ishihara,et al.  Photocrosslinkable chitosan as a biological adhesive. , 2000, Journal of biomedical materials research.

[59]  Jagdish Singh,et al.  Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. , 2008, International journal of pharmaceutics.

[60]  Daniel Cohn,et al.  Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. , 2005, Biomaterials.

[61]  D. Rousseau,et al.  Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. , 2006, International journal of biological macromolecules.

[62]  F. Mi,et al.  Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent , 1999 .

[63]  R. K. Jetti,et al.  Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. , 2007, International journal of pharmaceutics.

[64]  M. Voigt Biodegradable non-aqueous in situ forming microparticle drug delivery systems , 2011 .

[65]  J. Leroux,et al.  Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[66]  J. Robinson,et al.  Rheological, mucoadhesive and release properties of pluronic F-127 gel and pluronic F-127/polycarbophil mixed gel systems. , 2005, Die Pharmazie.

[67]  R. Gurny,et al.  Solutions as solutions--synthesis and use of a liquid polyester excipient to dissolve lipophilic drugs and formulate sustained-release parenterals. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[68]  W. Millard,et al.  Myotoxicity studies of injectable biodegradable in-situ forming drug delivery systems. , 2001, International journal of pharmaceutics.

[69]  A. Bernkop‐Schnürch,et al.  Thiolated polymers--thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. , 2003, International journal of pharmaceutics.

[70]  A. Jayakrishnan,et al.  Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. , 2005, Biomaterials.

[71]  J. Rodriguez,et al.  Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. , 1999, Journal of biomedical materials research.

[72]  M. Robinson,et al.  Biodegradable Implants for Sustained Drug Release in the Eye , 2010, Pharmaceutical Research.

[73]  Alan Young,et al.  Biodegradable polymer compositions and products therefrom , 1995 .

[74]  M. Lafleur,et al.  In Situ-Forming Oleogel Implant for Rivastigmine Delivery , 2008, Pharmaceutical Research.

[75]  Christine E Schmidt,et al.  Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. , 2005, Biomaterials.

[76]  C. Allen,et al.  In vitro and in vivo characterization of a novel biocompatible polymer-lipid implant system for the sustained delivery of paclitaxel. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[77]  S. Venkatraman,et al.  Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. , 2012, Journal of pharmaceutical sciences.

[78]  Jagdish Singh,et al.  In vitro release of insulin and biocompatibility of in situ forming gel systems. , 2005, International journal of pharmaceutics.

[79]  Richard L. Dunn,et al.  Sustained activity and release of leuprolide acetate from an in situ forming polymeric implant , 2000, AAPS PharmSciTech.

[80]  R V Bellamkonda,et al.  Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. , 2007, Biomaterials.

[81]  J. Y. Lee,et al.  In vivo efficacy of paclitaxel-loaded injectable in situ-forming gel against subcutaneous tumor growth. , 2010, International journal of pharmaceutics.

[82]  Anda Vintiloiu,et al.  Organogels and their use in drug delivery--a review. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[83]  Mohammed Berrada,et al.  A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[84]  H. Metz,et al.  Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research - chances and challenges. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[85]  E. Yilmaz,et al.  In Vitro and In Vivo Drug Release from a Novel In Situ Forming Drug Delivery System , 2008, Pharmaceutical Research.

[86]  R. Ottenbrite,et al.  Perspectives On: Polymeric Drugs and Drug Delivery Systems , 2005 .

[87]  R. Gurny,et al.  Solutions for Lipophilic Drugs: A Biodegradable Polymer Acting as Solvent, Matrix, and Carrier to Solve Drug Delivery Issues , 2011, The International journal of artificial organs.

[88]  G. Rafler,et al.  Parenterale Depotarzneiformen auf der Basis von biologisch abbaubaren Polymeren , 1991 .

[89]  A Hatefi,et al.  Biodegradable injectable in situ forming drug delivery systems. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[90]  J. Kost,et al.  Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. , 2000, Journal of biomedical materials research.

[91]  R. Gurny,et al.  Pseudo-thermosetting chitosan hydrogels for biomedical application. , 2005, International journal of pharmaceutics.

[92]  Luis Solorio,et al.  Effect of injection site on in situ implant formation and drug release in vivo. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[93]  Guoqiang Jiang,et al.  Injectable chitosan-based hydrogel for implantable drug delivery: body response and induced variations of structure and composition. , 2010, Journal of biomedical materials research. Part A.

[94]  Mohammad Erfan,et al.  Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. , 2009, Journal of pharmaceutical sciences.

[95]  B. Jeong,et al.  Reverse thermogelling biodegradable polymer aqueous solutions , 2009 .

[96]  J. H. Kim,et al.  In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. , 2011, Biomaterials.

[97]  D. Kohane,et al.  HYDROGELS IN DRUG DELIVERY: PROGRESS AND CHALLENGES , 2008 .

[98]  S. Tamilvanan,et al.  Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. , 2004, Progress in lipid research.

[99]  S. Venkatraman,et al.  Drug release from injectable depots: two different in vitro mechanisms. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[100]  Dong Wang,et al.  Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions , 2001 .

[101]  J. Leroux,et al.  In situ-forming hydrogels--review of temperature-sensitive systems. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[102]  M D McKee,et al.  Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. , 2005, Osteoarthritis and cartilage.

[103]  Kristi S. Anseth,et al.  Synthesis and characterization of tetrafunctional lactic acid oligomers: A potential in situ forming degradable orthopaedic biomaterial , 2001 .

[104]  Robert Gurny,et al.  Poly(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems. , 2007, Journal of biomedical materials research. Part A.

[105]  M. Nekoomanesh,et al.  The effect of aliphatic esters on the formation and degradation behavior of PLGA-based in situ forming system , 2011 .

[106]  P. Sinko,et al.  A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. , 2003, Biomaterials.

[107]  R. Bodmeier,et al.  Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[108]  R. Tarantino,et al.  A biodegradable injectable implant for delivering micro and macromolecules using poly (lactic-co-glycolic) acid (PLGA) copolymers , 1993 .

[109]  T. Vermonden,et al.  Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. , 2008, Biomacromolecules.

[110]  T. Kissel,et al.  In situ forming parenteral drug delivery systems: an overview. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[111]  L. Pescosolido Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications , 2011 .

[112]  R. Gurny,et al.  Therapeutic applications of viscous and injectable poly(ortho esters). , 2001, Advanced drug delivery reviews.

[113]  Cuifang Cai,et al.  A novel risperidone-loaded SAIB–PLGA mixture matrix depot with a reduced burst release: effects of solvents and PLGA on drug release behaviors in vitro/in vivo , 2012, Journal of Materials Science: Materials in Medicine.

[114]  M. H. Gil,et al.  In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. , 2011, Biomacromolecules.

[115]  Anna Gutowska,et al.  Lessons from nature: stimuli-responsive polymers and their biomedical applications. , 2002, Trends in biotechnology.

[116]  P. D. Graham,et al.  Phase inversion dynamics of PLGA solutions related to drug delivery. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[117]  Robert Altenloh From a Novel , 1953 .

[118]  Jason A Burdick,et al.  An investigation of the cytotoxicity and histocompatibility of in situ forming lactic acid based orthopedic biomaterials. , 2002, Journal of biomedical materials research.

[119]  L. Rioja,et al.  Pain-temperature relation in the application of local anaesthesia. , 1993, British journal of plastic surgery.

[120]  Y. Bae,et al.  Thermosensitive sol-gel reversible hydrogels. , 2002, Advanced drug delivery reviews.

[121]  Xing Tang,et al.  Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release. , 2007, Journal of pharmaceutical sciences.

[122]  A. R. Ahmed,et al.  Drug release from and sterilization of in situ cubic phase forming monoglyceride drug delivery systems. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[123]  Kristi S. Anseth,et al.  Polymeric dental composites : properties and reaction behavior of multimethacrylate dental restorations , 1995 .

[124]  Jinfeng Xing,et al.  Controlled thermal gelation of poly(ε-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(ε-caprolactone) , 2012 .

[125]  R. Bodmeier,et al.  A novel in situ forming drug delivery system for controlled parenteral drug delivery. , 2007, International journal of pharmaceutics.

[126]  Yalin Tang,et al.  A Temperature-Responsive Copolymer Hydrogel in Controlled Drug Delivery , 2006 .

[127]  A. McHugh,et al.  The role of polymer membrane formation in sustained release drug delivery systems. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[128]  M. Shive,et al.  Ultrastructure of hybrid chitosan–glycerol phosphate blood clots by environmental scanning electron microscopy , 2008, Microscopy research and technique.

[129]  J. Leroux,et al.  First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[130]  H. Metz,et al.  Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[131]  X. Zhu,et al.  Polymer microspheres for controlled drug release. , 2004, International journal of pharmaceutics.

[132]  E. Crawford,et al.  A 12-month clinical study of LA-2585 (45.0 mg): a new 6-month subcutaneous delivery system for leuprolide acetate for the treatment of prostate cancer. , 2003, The Journal of urology.

[133]  O. Sartor,et al.  An eight-month clinical study of LA-2575 30.0 mg: a new 4-month, subcutaneous delivery system for leuprolide acetate in the treatment of prostate cancer. , 2003, Urology.

[134]  Zhenghe Xu,et al.  Physical characterization of a chitosan-based hydrogel delivery system. , 2002, Journal of pharmaceutical sciences.

[135]  Teruo Okano,et al.  Pulsatile drug release control using hydrogels. , 2002, Advanced drug delivery reviews.

[136]  K. Himmelstein,et al.  In vitro properties of an in situ forming gel for the parenteral delivery of macromolecular drugs. , 1999, Pharmaceutical development and technology.

[137]  Robert Gurny,et al.  Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[138]  K J Brodbeck,et al.  Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[139]  G. Abraham,et al.  Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials , 2003, Journal of biomaterials science. Polymer edition.

[140]  K. J. Brodbeck,et al.  Sustained Release of Human Growth Hormone from PLGA Solution Depots , 1999, Pharmaceutical Research.

[141]  Steven P Schwendeman,et al.  Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. , 2008, International journal of pharmaceutics.

[142]  Yongzhuo Huang,et al.  An in situ-forming, solid lipid/PLGA hybrid implant for long-acting antipsychotics , 2011 .

[143]  S. Guterres,et al.  Chitosan Hydrogel Containing Capsaicinoids-Loaded Nanocapsules: An Innovative Formulation for Topical Delivery , 2010 .

[144]  J. Cleland,et al.  Sustained delivery of human growth hormone from a novel gel system: SABER. , 2002, Biomaterials.

[145]  T. Maehara,et al.  Chitosan hydrogel as a drug delivery carrier to control angiogenesis , 2006, Journal of Artificial Organs.

[146]  N. Udupa,et al.  Biodegradable Injectable Implant Systems for Long Term Drug Delivery Using Poly (Lactic‐co‐glycolic) Acid Copolymers , 1996, The Journal of pharmacy and pharmacology.

[147]  M. Heuzey,et al.  Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels , 2006 .

[148]  H. Swartz,et al.  Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. , 1996, Biomaterials.

[149]  E. Pamuła,et al.  In vitro and in vivo degradation of poly(l-lactide-co-glycolide) films and scaffolds , 2008, Journal of materials science. Materials in medicine.