Optimal Control of Surface Acoustic Wave Actuated Sorting of Biological Cells

The sorting of biological cells using biological micro-electro-mechanical systems (BioMEMS) is of utmost importance in various biomedical applications. Here, we consider a new type of devices featuring surface acoustic wave (SAW) actuated cell sorting in microfluidic separation channels. The SAWs are generated by an interdigital transducer (IDT) and manipulate the fluid flow such that cells of different type leave the channel through designated outflow boundaries. The operation of the device can be formulated as an optimal control problem where the objective functional is of tracking type, the state equations describe the fluid-structure interaction between the carrier fluid and the cells, and the control is the electric power applied to the IDT.

[1]  D. Boffi,et al.  The immersed boundary method: a finite element approach , 2003 .

[2]  H. Shapiro Practical Flow Cytometry: Shapiro/Flow Cytometry 4e , 2005 .

[3]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[4]  Howard M. Shapiro,et al.  Practical Flow Cytometry , 1985 .

[5]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[6]  D A Weitz,et al.  Surface acoustic wave actuated cell sorting (SAWACS). , 2010, Lab on a chip.

[7]  Michael Eisenstein,et al.  Cell sorting: Divide and conquer , 2006, Nature.

[8]  Ronald H. W. Hoppe,et al.  Numerical simulation of surface acoustic wave actuated cell sorting , 2013 .

[9]  A. Kini,et al.  Flow Cytometry in Clinical Diagnosis , 2009 .

[10]  Christian Kanzow,et al.  Theorie und Numerik restringierter Optimierungsaufgaben , 2002 .

[11]  Thomas Franke,et al.  Sorting of solid and soft objects in vortices driven by surface acoustic waves , 2009, Microtechnologies.

[12]  Larry A. Sklar,et al.  FLOW CYTOMETRY FOR BIOTECHNOLOGY , 2005 .

[13]  T. Hawley,et al.  Flow Cytometry Protocols , 2011, Methods in Molecular Biology.

[14]  Thomas Franke,et al.  Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows , 2011, Comput. Vis. Sci..

[15]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[16]  Ronald H. W. Hoppe,et al.  An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method , 2012, J. Comput. Phys..