Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

[1]  Jie Tian,et al.  A multi-phase level set framework for source reconstruction in bioluminescence tomography , 2010, J. Comput. Phys..

[2]  Hua-bei Jiang,et al.  Quantitative bioluminescence tomography guided by diffuse optical tomography. , 2008, Optics express.

[3]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[4]  R. Leahy,et al.  Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography , 2008, Physics in medicine and biology.

[5]  J. Willmann,et al.  Molecular imaging in drug development , 2008, Nature Reviews Drug Discovery.

[6]  Jie Tian,et al.  A multilevel adaptive finite element algorithm for bioluminescence tomography. , 2006, Optics express.

[7]  R. Leahy,et al.  Digimouse: a 3D whole body mouse atlas from CT and cryosection data , 2007, Physics in medicine and biology.

[8]  T. Chan,et al.  Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. , 2009, Optics express.

[9]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[10]  Ge Wang,et al.  Recent development in bioluminescence tomography , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[11]  Geoffrey McLennan,et al.  Practical reconstruction method for bioluminescence tomography. , 2005, Optics express.

[12]  A. Chatziioannou,et al.  Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study , 2005, Physics in medicine and biology.

[13]  Vasilis Ntziachristos,et al.  The inverse source problem based on the radiative transfer equation in optical molecular imaging , 2005 .

[14]  Xiaochao Qu,et al.  3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images. , 2010, Optics express.

[15]  Defeng Sun,et al.  Solving Karush--Kuhn--Tucker Systems via the Trust Region and the Conjugate Gradient Methods , 2003, SIAM J. Optim..

[16]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[17]  B. Pogue,et al.  Spectrally resolved bioluminescence optical tomography. , 2006, Optics letters.

[18]  Jie Tian,et al.  Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method , 2010, Int. J. Biomed. Imaging.

[19]  Jie Tian,et al.  Truncated Total Least Squares Method with a Practical Truncation Parameter Choice Scheme for Bioluminescence Tomography Inverse Problem , 2010, Int. J. Biomed. Imaging.

[20]  E.J. Candes Compressive Sampling , 2022 .

[21]  S. Arridge,et al.  Photon migration in non-scattering tissue and the effects on image reconstruction. , 1999, Physics in medicine and biology.

[22]  R. Leahy,et al.  Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging , 2005, Physics in medicine and biology.

[23]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[24]  Hamid Dehghani,et al.  Spectrally resolved bioluminescence tomography using the reciprocity approach. , 2008, Medical physics.

[25]  Jie Tian,et al.  Fast cone-beam CT image reconstruction using GPU hardware , 2008 .

[26]  Chen Xiu-hong Improved algorithm for support vector machines , 2009 .

[27]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[28]  Shan Zhao,et al.  Temperature-modulated bioluminescence tomography. , 2006, Optics express.

[29]  Hongkai Zhao,et al.  Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization. , 2010, Optics express.

[30]  M. Schweiger,et al.  The finite element method for the propagation of light in scattering media: boundary and source conditions. , 1995, Medical physics.

[31]  Xing Zhang,et al.  A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations. , 2010, Optics express.

[32]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[33]  W. Cong,et al.  Bioluminescence tomography based on the phase approximation model. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Jie Tian,et al.  In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. , 2010, Optics express.

[35]  Nanguang Chen,et al.  Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. , 2007, Optics express.

[36]  Jie Tian,et al.  An optimal permissible source region strategy for multispectral bioluminescence tomography. , 2008, Optics express.

[37]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[38]  Ge Wang,et al.  Differential Evolution Approach for Regularized Bioluminescence Tomography , 2010, IEEE Transactions on Biomedical Engineering.

[39]  M. Patterson,et al.  Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties , 2010, Biomedical optics express.

[40]  W. Han,et al.  Recent Development in Bioluminescence Tomography , 2006 .

[41]  E. Hoffman,et al.  In vivo mouse studies with bioluminescence tomography. , 2006, Optics express.