Prognostic significance of immunophenotypic and karyotypic features of Philadelphia positive B‐lymphoblastic leukemia in the era of tyrosine kinase inhibitors

Philadelphia chromosome (Ph)‐positive B‐lymphoblastic leukemia exhibits immunophenotypic, karyotypic, and molecular genetic heterogeneity. The prognostic significance of these parameters was assessed in the context of intensive tyrosine kinase inhibitor (TKI)‐based chemotherapy.

[1]  H. Kantarjian,et al.  First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. , 2010, Blood.

[2]  M. Andreeff,et al.  Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  M. Andreeff,et al.  Long-term outcome after hyper-CVAD and imatinib (IM) for de novo or minimally treated Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL). , 2010 .

[4]  H. Kantarjian,et al.  Prognostic impact of CD20 and CD25 expression in patients with Philadelphia-positive (Ph + ) acute lymphoblastic leukemia (ALL) , 2010 .

[5]  A. Moorman,et al.  A population-based cytogenetic study of adults with acute lymphoblastic leukemia. , 2010, Blood.

[6]  J. Esteve,et al.  Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial , 2010, Haematologica.

[7]  Nitin J. Karandikar,et al.  Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. , 2009, American journal of clinical pathology.

[8]  R. Gascoyne,et al.  R-CHOP with Etoposide Substituted for Doxorubicin (R-CEOP): Excellent Outcome in Diffuse Large B Cell Lymphoma for Patients with a Contraindication to Anthracyclines. , 2009 .

[9]  H. Kantarjian,et al.  Prognostic Impact of CD20 and CD25 Expression in Patients with Philadelphia-Positive (Ph + ) Acute Lymphoblastic Leukemia (ALL). , 2009 .

[10]  H. Kantarjian,et al.  Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. , 2009, Blood.

[11]  T. Naoe,et al.  Karyotype at diagnosis is the major prognostic factor predicting relapse-free survival for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with imatinib-combined chemotherapy , 2008, Haematologica.

[12]  M. Abdelhaleem Frequent but nonrandom expression of myeloid markers on de novo childhood acute lymphoblastic leukemia. , 2007, Experimental and molecular pathology.

[13]  J. Oldenburg,et al.  Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). , 2007, Blood.

[14]  T. Kyo,et al.  Clinical and prognostic significance of cytokine receptor expression in adult acute lymphoblastic leukemia: interleukin-2 receptor α-chain predicts a poor prognosis , 2007, Leukemia.

[15]  T. Lion,et al.  Mixed Lineage Leukemia–Rearranged Childhood Pro-B and CD10-Negative Pre-B Acute Lymphoblastic Leukemia Constitute a Distinct Clinical Entity , 2006, Clinical Cancer Research.

[16]  R. Larson Management of acute lymphoblastic leukemia in older patients. , 2006, Seminars in hematology.

[17]  J. Oldenburg,et al.  Pattern and Evolution of BCR-ABL Kinase Domain Mutations in Patients with Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph+ALL) Developing Resistance to Imatinib. , 2005 .

[18]  J. Miguel,et al.  Genetic heterogeneity of BCR/ABL+ adult B-cell precursor acute lymphoblastic leukemia: impact on the clinical, biological and immunophenotypical disease characteristics , 2005, Leukemia.

[19]  M. Andreeff,et al.  Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. , 2004, Blood.

[20]  C. Pui,et al.  Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome , 2004, Leukemia.

[21]  C. Bloomfield,et al.  Additional cytogenetic abnormalities in adults with Philadelphia chromosome‐positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia Group B , 2004, British journal of haematology.

[22]  K. Pattanapanyasat,et al.  Immunophenotypes and Outcome of Philadelphia Chromosome-Positive and -Negative Thai Adult Acute Lymphoblastic Leukemia , 2003, International journal of hematology.

[23]  O. Hrusak,et al.  Antigen expression patterns reflecting genotype of acute leukemias , 2002, Leukemia.

[24]  T. Lipp,et al.  Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. , 2002, Blood.

[25]  A. Órfão,et al.  Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression , 2001, Leukemia.

[26]  Z. Estrov,et al.  Outcome of Philadelphia Chromosome-Positive Adult Acute Lymphoblastic Leukemia , 2000, Leukemia & lymphoma.

[27]  R. Consolini,et al.  Expression of myeloid markers lacks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP-ALL 88-91 studies. , 1998, Blood.

[28]  Z. Estrov,et al.  Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. , 1998, Blood.

[29]  D. Neuberg,et al.  Expression of CD25 (interleukin-2 receptor α chain) in adult acute lymphoblastic leukemia predicts for the presence of BCR/ABL fusion transcripts: results of a preliminary laboratory analysis of ECOG/MRC Intergroup Study E2993 , 1997, Leukemia.

[30]  E. Thiel,et al.  Prognostic significance of additional chromosome abnormalities in adult patients with Philadelphia chromosome positive acute lymphoblastic leukaemia , 1996, British journal of haematology.

[31]  V. Kaartinen,et al.  BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. , 1995, Blood.

[32]  E. Paietta Proposals for the immunological classification of acute leukemias. , 1995, Leukemia.

[33]  A Orfao,et al.  Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). , 1995, Leukemia.

[34]  F. Appelbaum,et al.  Expression of myeloid antigens by blast cells in acute lymphoblastic leukemia of adults. The Southwest Oncology Group experience. , 1994, Leukemia.

[35]  C. Bloomfield,et al.  Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a Cancer and Leukemia Group B Study (8762). , 1992, Blood.

[36]  G. Jenster,et al.  Acute leukaemia in bcr/abl transgenic mice , 1990, Nature.

[37]  G. Daley,et al.  Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. , 1990, Science.

[38]  J. Rowley A New Consistent Chromosomal Abnormality in Chronic Myelogenous Leukaemia identified by Quinacrine Fluorescence and Giemsa Staining , 1973, Nature.

[39]  N. Mantel Evaluation of survival data and two new rank order statistics arising in its consideration. , 1966, Cancer chemotherapy reports.

[40]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[41]  M. Onciu Diagnostic Pediatric Hematopathology: Precursor lymphoid neoplasms , 2011 .

[42]  A. Vitale,et al.  An Accurate and Rapid Flow Cytometric Diagnosis of Bcr/abl Positive Acute Lymphoblastic Leukemia Early Release Paper , 2009 .

[43]  C. Catoi,et al.  TUMORS OF HEMATOPOIETIC AND LYMPHOID TISSUES , 2007 .

[44]  L. Medeiros,et al.  TaqMan RT-PCR assay coupled with capillary electrophoresis for quantification and identification of bcr-abl transcript type , 2004, Modern Pathology.

[45]  D. Neuberg,et al.  Expression of CD25 (interleukin-2 receptor alpha chain) in adult acute lymphoblastic leukemia predicts for the presence of BCR/ABL fusion transcripts: results of a preliminary laboratory analysis of ECOG/MRC Intergroup Study E2993. Eastern Cooperative Oncology Group/Medical Research Council. , 1997, Leukemia.

[46]  D.,et al.  Regression Models and Life-Tables , 2022 .