Ecological significance of root tip rotation for seedling establishment of Oryza sativa L

How plant seeds secure root penetration into soil to obtain good seedling establishment is one of the basic ecological problems. In this study, seminal root growth was investigated to clarify the cause of varietal difference of seedling establishment in direct seeding of rice in flooded paddy fields, with special reference to root tip rotation. In a field experiment, seedling establishment percentage had a weak correlation with seminal root elongation rate but was not correlated with apparent seedling weight in water, which has been reported to be the cause of floating seedlings resulting in poor seedling establishment. Root tip rotation was analyzed for indoor-grown seedlings using spectrum analysis: the maximum entropy method (MEM) was used. Maximum entropy method power spectrum analysis clarified that maximum MEM power density (practically corresponds to spiral angle) detected in the frequency range above 0.1 cycles mm-1 was highly and positively correlated to seedling establishment percentage in the field experiment. Maximum MEM power density in high correlation with seedling establishment was mostly found around frequencies of 0.2 cycles mm–1, which corresponded to 2.0–3.4 cycles of root tip rotation per day. From these results, root tip rotation (circumnutation) with a larger spiral angle was suggested to play an important role in the establishment of rice seedlings on flooded and very soft soil. A possible explanation for why a larger spiral angle was advantageous for seedling establishment is that if buoyancy and seedling weight are constant, a larger pushing force of the seminal root is available without causing floating of a seedling, due to the upward force being a reaction of the seminal root pushing force.