An optimization framework to improve 4D-Var data assimilation system performance

This paper develops a computational framework for optimizing the parameters of data assimilation systems in order to improve their performance. The approach formulates a continuous meta-optimization problem for parameters; the meta-optimization is constrained by the original data assimilation problem. The numerical solution process employs adjoint models and iterative solvers. The proposed framework is applied to optimize observation values, data weighting coefficients, and the location of sensors for a test problem. The ability to optimize a distributed measurement network is crucial for cutting down operating costs and detecting malfunctions.

[1]  D. Daescu On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation , 2008 .

[2]  Liang Xu,et al.  Optimal placement of mobile sensors for data assimilations , 2012 .

[3]  K. Anastasiou,et al.  SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES , 1997 .

[4]  Dacian N. Daescu,et al.  Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters , 2010 .

[5]  R. Giering Tangent linear and adjoint model compiler users manual , 1996 .

[6]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[7]  Adrian Sandu,et al.  Efficient methods for computing observation impact in 4D-Var data assimilation , 2013, Computational Geosciences.

[8]  Adrian Sandu,et al.  A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation , 2011, SIAM/ASA J. Uncertain. Quantification.

[9]  Richard Liska Burton Wendroff Composite Schemes For Conservation Laws , 1998 .

[10]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[11]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[12]  Chris Snyder,et al.  Statistical Design for Adaptive Weather Observations , 1999 .

[13]  Roger Daley,et al.  Observation and background adjoint sensitivity in the adaptive observation‐targeting problem , 2007 .

[14]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[15]  Ronald Gelaro,et al.  Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models , 2009 .

[16]  Chris Snyder,et al.  A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment , 2008 .

[17]  Marc Bocquet,et al.  Targeting of observations for accidental atmospheric release monitoring , 2009 .

[18]  A. Kasahara,et al.  Nonlinear shallow fluid flow over an isolated ridge , 1968 .

[19]  Harold R. Parks,et al.  The Implicit Function Theorem , 2002 .

[20]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[21]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[22]  D. Cacuci Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .

[23]  D. Ucinski Optimal sensor location for parameter estimation of distributed processes , 2000 .

[24]  R. Daley Atmospheric Data Analysis , 1991 .

[25]  Adrian Sandu,et al.  Obtaining and using second order derivative information in the solution of large scale inverse problems , 2010, SpringSim.

[26]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[27]  Gérald Desroziers,et al.  Diagnosis and adaptive tuning of observation‐error parameters in a variational assimilation , 2001 .

[28]  Ionel M. Navon Data Assimilation for Numerical Weather Prediction: A Review , 2009 .

[29]  Adrian Sandu,et al.  Singular Vector Analysis for Atmospheric Chemical Transport Models , 2006 .

[30]  Dusanka Zupanski,et al.  Applications of information theory in ensemble data assimilation , 2007 .

[31]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[32]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[33]  I. Yu. Gejadze,et al.  On optimal solution error covariances in variational data assimilation problems , 2010, J. Comput. Phys..

[34]  I. Yu. Gejadze,et al.  Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics , 2011, J. Comput. Phys..

[35]  Adrian Sandu,et al.  Discrete second order adjoints in atmospheric chemical transport modeling , 2008, J. Comput. Phys..

[36]  Adrian Sandu,et al.  Adjoint sensitivity analysis of regional air quality models , 2005 .

[37]  O. Talagrand,et al.  Diagnosis and tuning of observational error in a quasi‐operational data assimilation setting , 2006 .

[38]  Zhi Wang,et al.  The second order adjoint analysis: Theory and applications , 1992 .

[39]  R. Errico,et al.  Examination of various-order adjoint-based approximations of observation impact , 2007 .

[40]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[41]  Adrian Sandu,et al.  Low-rank approximations for computing observation impact in 4D-Var data assimilation , 2013, Comput. Math. Appl..

[42]  Jacques Verron,et al.  Sensitivity Analysis in Variational Data Assimilation , 1997 .

[43]  Adrian Sandu,et al.  Four-dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements , 2007 .

[44]  Adrian Sandu,et al.  Second-order adjoints for solving PDE-constrained optimization problems , 2012, Optim. Methods Softw..

[45]  Yannick Trémolet,et al.  Computation of observation sensitivity and observation impact in incremental variational data assimilation , 2008 .

[46]  Tamar Schlick,et al.  TNPACK—A truncated Newton minimization package for large-scale problems: I. Algorithm and usage , 1992, TOMS.

[47]  Dacian N. Daescu,et al.  Adaptive observations in the context of 4D-Var data assimilation , 2004 .