Fast iterative solvers for buoyancy driven flow problems
暂无分享,去创建一个
Howard C. Elman | Milan D. Mihajlovic | David J. Silvester | H. Elman | D. Silvester | M. Mihajlovic
[1] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[2] R. Sani,et al. Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .
[3] F. Wubs. Notes on numerical fluid mechanics , 1985 .
[4] Jaroslav Hron,et al. A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes , 2009, J. Comput. Phys..
[5] C. Vuik,et al. SIMPLE‐type preconditioners for the Oseen problem , 2009 .
[6] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[7] K. Ragsdell,et al. The energy method , 1975 .
[8] Wulf G. Dettmer,et al. An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .
[9] ElmanHoward,et al. Fast iterative solvers for buoyancy driven flow problems , 2011 .
[10] J. C. Simo,et al. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .
[11] Dominic Davis,et al. An operator-splitting finite-element approach to the 8:1 thermal-cavity problem , 2002 .
[12] Brian Straughan,et al. The Energy Method, Stability, and Nonlinear Convection , 1991 .
[13] Rama Govindarajan,et al. An Introduction to Hydrodynamic Stability , 2010 .
[14] Pinhas Z. Bar-Yoseph,et al. Stability of multiple steady states of convection in laterally heated cavities , 1999, Journal of Fluid Mechanics.
[15] William Layton,et al. Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .
[16] H. Ninokata,et al. Numerical Simulation of Oscillatory Convection in Low Prandtl Number Fluids Using Aqua Code , 1990 .
[17] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[18] Mark A. Christon,et al. Computational predictability of time‐dependent natural convection flows in enclosures (including a benchmark solution) , 2002 .
[19] Anne C. Skeldon,et al. Convection in a low Prandtl number fluid , 1996 .
[20] Christopher Smethurst. A Finite Element Solution of the Natural Convection Problem in 3D , 2010 .
[21] R. L. Sani,et al. Isothermal laminar flow , 2000 .
[22] Horst Leipholz,et al. The Energy Method , 1987 .
[23] J. Scott,et al. HSL MI 20 : An efficient AMG preconditioner for finite element problems in 3 D , 2010 .
[24] Shihe Xin,et al. An extended Chebyshev pseudo‐spectral benchmark for the 8:1 differentially heated cavity , 2002 .
[25] David F. Griffiths,et al. Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..
[26] J. Scott,et al. HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .
[27] Howard C. Elman,et al. BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS ∗ , 2009 .
[28] K. H. Winters. Oscillatory convection in liquid metals in a horizontal temperature gradient , 1988 .
[29] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[30] David F. Griffiths,et al. Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..