Nonlinear regression modeling via the lasso-type regularization
暂无分享,去创建一个
[1] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[2] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[3] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[4] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[5] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[6] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[7] G. Kitagawa,et al. Generalised information criteria in model selection , 1996 .
[8] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[9] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[10] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[11] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[12] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[13] S. Konishi,et al. Nonlinear regression modeling via regularized radial basis function networks , 2008 .
[14] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[15] Satoru Miyano,et al. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. , 2007, Genome informatics. International Conference on Genome Informatics.
[16] Trevor Hastie,et al. The elements of statistical learning. 2001 , 2001 .
[17] Donald Geman,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .
[18] Seiya Imoto,et al. Selection of smoothing parameters inB-spline nonparametric regression models using information criteria , 2003 .
[19] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[20] G. Casella,et al. The Bayesian Lasso , 2008 .
[21] G. Kitagawa,et al. Information Criteria and Statistical Modeling , 2007 .
[22] S. Konishi,et al. Bayesian information criteria and smoothing parameter selection in radial basis function networks , 2004 .
[23] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .