Impact of topographic internal lee wave drag on an eddying global ocean model

[1]  R. Hallberg,et al.  Energy Flux into Internal Lee Waves: Sensitivity to Future Climate Changes Using Linear Theory and a Climate Model , 2015 .

[2]  N. Bindoff,et al.  Antarctic Circumpolar Current transport and barotropic transition at Macquarie Ridge , 2014 .

[3]  P. Ailliot,et al.  Lee wave generation rates in the deep ocean , 2014 .

[4]  A. Hogg,et al.  Effect of topographic barriers on the rates of available potential energy conversion of the oceans , 2014 .

[5]  R. Hallberg,et al.  Sensitivity of the Ocean State to Lee Wave–Driven Mixing , 2014 .

[6]  S. Jayne,et al.  Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model , 2013 .

[7]  A. Wallcraft,et al.  Skill testing a three‐dimensional global tide model to historical current meter records , 2013 .

[8]  R. Hallberg,et al.  Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing , 2013 .

[9]  Darran G. Furnival,et al.  Global Observations of Ocean-Bottom Subinertial Current Dissipation , 2013 .

[10]  D. Luther,et al.  Spatially heterogeneous diapycnal mixing in the abyssal ocean: A comparison of two parameterizations to observations , 2012 .

[11]  Robert B. Scott,et al.  Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data , 2012 .

[12]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[13]  J. Richman,et al.  Energetics of a global ocean circulation model compared to observations , 2011 .

[14]  Stephen D. Eckermann,et al.  Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag , 2011 .

[15]  John A. Goff,et al.  Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability , 2010 .

[16]  R. Ferrari,et al.  Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Application to the Southern Ocean , 2010 .

[17]  R. Ferrari,et al.  Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory , 2010 .

[18]  K. Polzin Mesoscale Eddy–Internal Wave Coupling. Part II: Energetics and Results from PolyMode , 2010 .

[19]  D. Luther,et al.  On a Simple Empirical Parameterization of Topography-Catalyzed Diapycnal Mixing in the Abyssal Ocean , 2010 .

[20]  Steven A. Orszag,et al.  Large Eddy Simulation of Complex Engineering and Geophysical Flows , 2010 .

[21]  J. Goff,et al.  Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness , 2010 .

[22]  M. Maltrud,et al.  Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records , 2010 .

[23]  E. Joseph Metzger,et al.  Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .

[24]  M. Iskandarani,et al.  Abyssal circulation in the Indian Ocean from a 1/12 ∘ resolution global hindcast , 2009 .

[25]  Ole Baltazar Andersen,et al.  DNSC08 mean sea surface and mean dynamic topography models , 2009 .

[26]  S. Xie,et al.  Vertical Mixing in the Ocean and Its Impact on the Coupled Ocean–Atmosphere System in the Eastern Tropical Pacific* , 2009 .

[27]  R. Scott,et al.  An update on the wind power input to the surface geostrophic flow of the World Ocean , 2009 .

[28]  Ayon Sen,et al.  Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models , 2009 .

[29]  K. Polzin Mesoscale Eddy–Internal Wave Coupling. Part I: Symmetry, Wave Capture, and Results from the Mid-Ocean Dynamics Experiment , 2008 .

[30]  Patrick J. Hogan,et al.  The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current , 2008 .

[31]  H. Hurlburt,et al.  Steering of upper ocean currents and fronts by the topographically constrained abyssal circulation , 2008 .

[32]  D. Marshall,et al.  A Conjecture on the Role of Bottom-Enhanced Diapycnal Mixing in the Parameterization of Geostrophic Eddies , 2008 .

[33]  Ayon Sen,et al.  Global energy dissipation rate of deep‐ocean low‐frequency flows by quadratic bottom boundary layer drag: Computations from current‐meter data , 2008 .

[34]  B. Arbic,et al.  On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies , 2008 .

[35]  Frank O. Bryan,et al.  Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system , 2007 .

[36]  T. Shepherd,et al.  Angular Momentum Conservation and Gravity Wave Drag Parameterization: Implications for Climate Models , 2007 .

[37]  E. Joseph Metzger,et al.  Evaluation of HYCOM in the Kuroshio Extension region using new metrics , 2007 .

[38]  Robert Hallberg,et al.  The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project , 2006 .

[39]  S. Garner A Topographic Drag Closure Built on an Analytical Base Flux , 2005 .

[40]  A. Thompson,et al.  Scaling Baroclinic Eddy Fluxes: Vortices and Energy Balance , 2005 .

[41]  H. Hurlburt,et al.  Convergence of Laplacian diffusion versus resolution of an ocean model , 2005 .

[42]  M. Maltrud,et al.  An eddy resolving global 1/10° ocean simulation , 2005 .

[43]  Eric P. Chassignet,et al.  US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM) , 2004 .

[44]  Theodore G. Shepherd,et al.  The Angular Momentum Constraint on Climate Sensitivity and Downward Influence in the Middle Atmosphere , 2004 .

[45]  G. Flierl,et al.  Baroclinically Unstable Geostrophic Turbulence in the Limits of Strong and Weak Bottom Ekman Friction: Application to Midocean Eddies , 2004 .

[46]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[47]  P. Klein,et al.  Effects of Bottom Friction on Nonlinear Equilibration of an Oceanic Baroclinic Jet , 2004 .

[48]  M. Visbeck,et al.  Widespread Intense Turbulent Mixing in the Southern Ocean , 2004, Science.

[49]  G. Halliwell,et al.  Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM) , 2004 .

[50]  L. St. Laurent,et al.  Estimating tidally driven mixing in the deep ocean , 2002 .

[51]  Melinda S. Peng,et al.  Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for Ocean Models , 2002 .

[52]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[53]  J. Toole,et al.  Buoyancy Forcing by Turbulence above Rough Topography in the Abyssal Brazil Basin , 2001 .

[54]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[55]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[56]  D. Webb,et al.  Oceanography: Vertical mixing in the ocean , 2001, Nature.

[57]  Jean-Marc Molines,et al.  Circulation characteristics in three eddy-permitting models of the North Atlantic , 2001 .

[58]  Gilles Reverdin,et al.  Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 , 2000 .

[59]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[60]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[61]  P. L. Traon,et al.  AN IMPROVED MAPPING METHOD OF MULTISATELLITE ALTIMETER DATA , 1998 .

[62]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[63]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[64]  Joachim Dengg,et al.  The Problem of Gulf Stream Separation: A Barotropic Approach , 1993 .

[65]  Thomas H. Jordan,et al.  Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .

[66]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[67]  T. Palmer,et al.  Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization , 1986 .

[68]  R. Laprise,et al.  The Canadian Climate Centre spectral atmospheric general circulation model , 1984 .

[69]  T. H. Bell,et al.  Topographically generated internal waves in the open ocean , 1975 .

[70]  G. Taylor Tidal Friction in the Irish Sea , 1919 .