Memoryless Thermodynamics? A Reply

Several years ago, Chris Jarzynski and one of us (DM)introduced a solvable model of a thermodynamic ratchetthat leveraged information to convert thermal energy towork [1, 2]. Our hope was to give a new level of under-standing of the Second Law of Thermodynamics and oneof its longest-lived counterexamples—Maxwell’s Demon.As it reads in “bits” from an input string Y, a detailed-balance stochastic multistate controller raises or lowers amass against gravity, writing “exhaust” bits to an outputstring Y

[1]  Neri Merhav,et al.  Sequence complexity and work extraction , 2015, ArXiv.

[2]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[3]  Zhiyue Lu,et al.  Engineering Maxwell's demon , 2014 .

[4]  Udo Seifert,et al.  Stochastic thermodynamics with information reservoirs. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  James P. Crutchfield,et al.  Computational Mechanics of Input–Output Processes: Structured Transformations and the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \ , 2014, Journal of Statistical Physics.

[6]  A. B. Boyd,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.

[7]  James P. Crutchfield,et al.  Computational Mechanics of Input-Output Processes: Structured transformations and the ε-transducer , 2014, ArXiv.

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  A. B. Boyd,et al.  Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.

[10]  J. R. Dorfman,et al.  An Introduction to Chaos in Nonequilibrium Statistical Mechanics: Transport coefficients and chaos , 1999 .

[11]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[12]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[13]  Sadi Carnot,et al.  Reflections on the Motive Power of Heat , 2009 .